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SUPPLEMENT TO “COMPLEX-VALUED TIME SERIES MODELING
FOR IMPROVED ACTIVATION DETECTION IN FMRI STUDIES”

BY DANIEL W. ADRIAN‡ AND RANJAN MAITRA∗,§ AND DANIEL B. ROWE†,¶

Grand Valley State University‡ and Iowa State University§ and Marquette
University¶

S-1. Supplement to Section 2 – Further description of the finger-tapping
dataset. Figure S-1 shows images of the real, imaginary, magnitude, and phase
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FIG S-1. Images of the (a) real, (b) imaginary, (c) magnitude, and (d) phase components of the seven
slices of the image at the first time point, ordered from superior to inferior when viewed left to right.

components of the data for all slices at the first time point.

S-2. Supplement to Section 3 – Further Methodological Development.
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S-2.1. Supplement to Section 3.1 – Complex-valued running line derivations.
First, we note that (3.1) assumes that ηRt, ηIt are independent identically dis-
tributed as N(0, σ2) random variables and that the real and imaginary errors are
temporally independent. Now, to evaluate the complex-valued running line at t∗,
the MLEs of β = (β0, β1)

′, γ0, and γ1 can be obtained by iteratively updating the
equations

β̂ = (X ′X)−1X ′r∗(S-1)

γ̂0 = arctan4(S,C)(S-2)

γ̂∗1 = γ̂1 − `′(γ̂1)/`′′(γ̂1)(S-3)

where, in (S-1), X is a matrix with two columns: an intercept and the arithmetic
sequence with tth entry st, and r∗ is a vector with tth entry rt cos(φt−θ̂t). In (S-2),
S =

∑
t∈N(t∗) rtρ̂t sin[φt− g(stγ̂1)] and C =

∑
t∈N(t∗) rtρ̂t cos[φt− g(stγ̂1)]. In

the Newton-Raphson update (S-3) which computes the new estimate γ̂∗1 from the
old estimate γ̂1,

`′(γ̂1) =
∑

t∈N(t∗)

strtρ̂tg
′(stγ̂1) sin(φt − θ̂t)(S-4)

`′′(γ̂1) =
∑

t∈N(t∗)

s2t rtρ̂t

{
g′′(stγ̂1) sin(φt − θ̂t)
−[g′(stγ̂1)]

2 cos(φt − θ̂t)

}
(S-5)

where g′(x) = 2/(1 + x2) and g′′(x) = 2x/(1 + x2)2. We have applied the
starting values γ̂(0)0 = arctan4(

∑
t∈N(t∗) rt sinφt,

∑
t∈N(t∗) rt cosφt), β̂(0)1 =

(1/n)
∑

t∈N(t∗) rt cos(φt − γ̂(0)0 ), and β̂(0)1 = γ̂
(0)
1 = 0. We use the log-likelihood

function to assess convergence, which only takes a few iterations of (S-1)-(S-3).

S-2.2. Supplement to Section 3.3 – Magnitude-only AR(p) model derivations.
The log-likelihood function is given by logL(α,β, σ2|r) = −n

2 log σ2−1
2 log |Rn|−

1
2σ2 (r − Xβ)′R−1n (r − Xβ), where Rn is such that σ2Rn = Cov(ε). The

unrestricted MLEs of β and σ2 are given by β̂ = (X ′R̂
−1
n X)−1X ′R̂

−1
n r and

σ̂2 = (r − Xβ̂)′R̂
−1
n (r − Xβ̂)/n, respectively. We obtain α̂ by solving the

system of equations (due to Miller, 1995):
∑p

j=1[d̂jk + (j/n)d̂0,|j−k|]α̂j = d̂0k,

k = 1, . . . , p, where d̂ij =
∑n−i−j

t=1 ε̂t+iε̂t+j , for 0 ≤ i, j ≤ p, and ε̂t = rt − x′tβ̂,
t = 1, . . . , n. The estimation procedure, due to Cochrane and Orcutt (1949), begins
with R̂n = In and then iteratively updates β̂, α̂, and R̂

−1
n until convergence. The
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restricted MLEs under H0 : Cβ = 0 follow the equations

β̃ = Ψ(X ′R̃
−1
n X)−1X ′R̃

−1
n r,(S-6)

σ̃2 = (r −Xβ̃)′R̃
−1
n (r −Xβ̃)/n,(S-7)

d̃0k =

p∑
j=1

[d̃jk + (j/n)d̃0,|j−k|]α̃j , k = 1, . . . , p,(S-8)

where

(S-9) Ψ = Iq − (X ′R̃
−1
n X)−1C ′

[
C(X ′R̃

−1
n X)−1C ′

]−1
C,

q is the length of β, and R̃
−1
n and d̃ij are the restricted estimation analogs of their

counterparts above. The LRT statistic is given by

(S-10) ΛM,p = n log(σ̃2/σ̂2)− log
(∣∣∣R̃−1p ∣∣∣ / ∣∣∣R̂−1p ∣∣∣) ,

whereRp is such that σ2Rp = Cov(ε1, . . . , εp).

S-2.3. Supplement to Section 3.4 – Restricted MLEs under a complex-valued
AR(p) model. Recall from Section 3.4 that restricted MLEs are denoted with
tildes, in contrast to the unrestricted MLEs denoted with “hats”. The restricted
MLE of β under H0 : Cβ = 0 is given by

(S-11) β̃ =
Ψβ̃R

[
cos θ̃
σ̃2
R
− ρ̃ sin θ̃

σ̃Rσ̃I

]
+ Ψβ̃I

[
sin θ̃
σ̃2
I
− ρ̃ cos θ̃

σ̃Rσ̃I

]
cos2 θ̃
σ̃2
R

+ sin2 θ̃
σ̃2
I
− 2 ρ̃

σ̃Rσ̃I
sin θ̃ cos θ̃

,

which has a similar form to (3.5) except for premultiplication by the matrix Ψ

defined in (S-9). In the above, we have β̃R = (X ′R̃
−1
n X)−1X ′R̃

−1
n yR and β̃I =

(X ′R̃
−1
n X)−1X ′R̃

−1
n yI . The restricted MLE for θ is given by

(S-12) θ̃ =

[
arcsin

(
c̃/

√
ã2 + b̃2

)
− arctan4(b̃, ã)

]
/2,

in which ã, b̃, and c̃ are defined by replacing hats by tildes in the definitions
of a through f following (3.6). In addition, BRR, BII , and BRI must be rede-
fined as B̃RR = β̃

′
R(Ψ′X ′R̃

−1
n X)β̃R, B̃II = β̃

′
I(Ψ

′X ′R̂
−1
n X)β̃I , and B̃RI =

β̃
′
R(Ψ′X ′R̂

−1
n X)β̃I , respectively. Equations for the restricted MLEs for σ2R, σ

2
I , ρ,

and α may be obtained replacing hats by tildes in equations (3.7)-(3.10).
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S-2.4. Supplement to Section 3.5 – Controlling order over-detection via the sig-
nificance level. We show that the significance level, say δ, controls order over-
detection for a single voxel time series in the sense that δ = P (p̂ > p|p̂ ≥ p). To
show this, first recall that the detected order p̂ = k′ − 1, where k′ is the first k for
which we are unable to rejectH0 : p = k−1, k ≥ 1. Note two facts for any k ≥ 1:
first, rejectingH0 : αk = 0 means that k′ > k ⇒ p̂ > k−1. Second, simply testing
H0 : p = k − 1 in the context of the procedure implies that k′ ≥ k ⇒ p̂ ≥ k − 1.
From the definition of δ, for k > p, δ = P (reject H0|H0is true) = P (p̂ >
k − 1|p̂ ≥ k − 1). Substituting k = p+ 1 yields the above result.

S-3. Supplement to Section 4 – Further Analysis of Finger-Tapping Dataset.

S-3.1. Supplement to Section 4.2 – Addressing model fit and model assumptions.
Model (3.2) specifies that all effects in the X matrix are phase-coupled through θ.
That is, as pointed out by a reviewer, (3.2) is equivalent to the two linear models

(S-13) yR = XβR + ηR, yI = XβI + ηI ,

where βIj/βRj = tan θ for each element j of βR and βI , where the last is the
phase coupling assumption. To address this assumption, we performed an LRT
comparing, for each voxel time series in the finger-tapping dataset model (S-13)
without the phase coupling assumption with (3.2). This LRTS has an asymptotic
χ2
1 null distribution. After controlling for FDR (Benjamini and Hochberg, 1995) at

the 5% level, the LRT statistic was significant for only one and two in-mask voxels
for the cases with FWHM=0 and 2 voxels respectively: there were no significant
voxels for FWHM=4 and 6 voxels. Thus, we conclude that deviations from the
phase coupling assumption in model (3.2) are at best marginal.

Next, we focus on the assumption that the real and imaginary errors share the
same AR coefficients. This assumption is supported by the similarity of the dis-
tributions of the lag-1 autocorrelations of the real and imaginary residuals shown
in Figure S-2. Specifically, the real and imaginary residuals are given by η̂R =
yR −Xβ̂ cos θ̂ and η̂I = yI −Xβ̂ sin θ̂, respectively, where β̂ and θ̂ are model
(3.2) MLEs under the assumption that p = 0. Additionally, we can use an LRT to
check this assumption. Because ML estimation is intractable when allowing for dif-
ferent AR coefficients of ηR and ηI , dependence between them, and phase coupling
(which itself is an argument for the equality of the AR coefficients), we assume
real/imaginary independence and drop the phase coupling assumption when calcu-
lating the LRTS. The full model is then given by (S-13) with separate AR coeffi-
cientsαR andαI for the real and imaginary errors, respectively; the reduced model
assumes thatαR = αI . Under the assumption thatαR andαI have the same order
p, the LRTS follows an asymptotic χ2

p distribution underH0 : αR = αI . Table S-1
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FIG S-2. Kernel density estimates of (a) the autocorrelation of the real and imaginary residuals and
(b) their difference at different amounts of spatial smoothing (determined by FWHM).

shows the proportions of voxels in which the LRT shows evidence of violation of
the αR = αI assumption at a per comparison error rate of 0.05 and a familywise
error rate of 0.05 (using the Bonferroni correction). These proportions indicate that

FWHM 0 2 4 6
PCER = 0.05 0.262 0.397 0.495 0.571
FWER = 0.05 0.030 0.074 0.105 0.105

TABLE S-1
Proportions of voxel time series in the finger-tapping dataset showing a violation of the assumption

of equality of the AR coefficients of the real and imaginary errors according to a LRT at a per
comparison error rate (PCER) and familywise error rate (FWER) of 0.05.

a substantial proportion of voxels show statistically significant evidence that this
assumption is violated. Whether this result is practically significant in terms of the
difference in autocorrelations of real and imaginary residuals is a matter of debate.

In addition, to check the sufficiency of the AR(p) model, we computed Ljung-
Box-Pierce Q-statistics (Box and Pierce, 1970; Ljung and Box, 1978). The Q-
statistic for a (real-valued) time series of length n is defined as Q = n(n +
2)
∑K

k=1(n − k)−1ρ̂2(k), where ρ̂(k) is the lag-k sample autocorrelation of the
model fit residuals, and K is typically chosen to be K = 20 (Shumway and
Stoffer, 2006). When an AR(p) model is fit to an AR(p) time series, Q is asymp-
totically χ2

K−p. Under the complex-valued AR(p) model, the real and imaginary
model fit residuals are given by êR,t+p = η̂R,t+p−

∑p
k=1 α̂kη̂R,t+p−k and êI,t+p =

η̂I,t+p−
∑p

k=1 α̂kη̂I,t+p−k, respectively, t = 1, . . . , n−p, where η̂Rt and η̂It are tth
entries of the vectors η̂R = yR−Xβ̂ cos θ̂ and η̂I = yI−Xβ̂ sin θ̂, respectively.
For each complex-valued time series, we computed separate Q-statistics based on
the real and imaginary residuals. We computed Q-statistics based on AR(0) and
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AR(8) complex-valued model fits – the latter because p̂C ≤ 8 for all voxels – to
the finger-tapping dataset, and also simulated time series based on complex-valued
AR(8) model parameter estimates. Figure S-3 shows quantile-quantile plots com-
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FIG S-3. Quantile-quantile plots comparing the theoretical χ2
12 distribution of the Ljung-Box-Pierce

Q-statistics to the distributions of the Q-statistics computed from the simulated (“sim”) and real
finger-tapping data under complex-valued AR(0) and AR(8) model fits for various amounts of spatial
smoothing (FWHMs).

paring the distribution of these four Q-statistics to the theoretical χ2
12 null distribu-

tion of Q – i.e. under K = 20 and p = 8. The AR(8)-model residual Q-statistics
for the dataset are well-below the residual Q-statistics for the AR(0) model and
relatively close to the AR(8)-model residual Q-statistics for the simulated data and
the χ2

12 distribution. This indicates that the AR model fit removes the vast major-
ity of autocorrelation from the dataset and gains from introducing more complex
(and computationally intensive) methods, such as incorporating moving average,
integrated, or seasonal components, would be small.

Last, in response to a reviewer’s concern about the increased computational bur-
6



den imposed by analyzing the complex-valued data, we compared the computa-
tional times for the CV and MO data-based analyses of the finger-tapping dataset.
These times are based on a CV running line that uses linear interpolation between
every j = 10 time points, spatial smoothing with FWHM = 4 voxels, and an In-
tel Core i5-4300M CPU 64-bit processor running C code within R (R Core Team,
2016). The computational times are decomposed into the steps of detrending, spa-
tial smoothing, order detection, and activation statistics in Table S-2. As should be

Data Analysis Detrending
Spatial Order Activation

Other Total
Smoothing Detection Statistics

Magnitude-only 13.1 23.0 16.8 10.7 7.3 70.8
Complex-valued 95.6 45.2 55.4 22.8 7.8 226.8

TABLE S-2
Computational times (in seconds) for the various processing steps for the magnitude-only and

complex-valued data-based analyses of the finger-tapping dataset.

expected (since there are twice as many observations), the complex-valued data-
based analysis takes more time, roughly three times so, but the entire analysis takes
less than four minutes. Further, the computational time is scalable, meaning that
this ratio of three-to-one will hold regardless of the dataset size.

S-3.2. Supplement to Section 4.3 – Additional activation maps. Figure 5 showed
activation images for the four activation statistics ΛC,p̂C , ΛM,p̂M , ΛC,0, and ΛM,0

for slice 5 of the dataset when a spatial smoothing was performed with Gaussian
filter of FWHM = 4 voxels. To display more of the dataset and the effect of each
level of spatial smoothing, we provide activation images for the full set of seven
slices and at the four FWHMs of 0 (indicating no smoothing), 2, 4, and 6 vox-
els. Each of Figures S-4 through S-6 shows the activation images for slices 4, 5,
and 6 of the dataset, with each figure showing the 16 combinations of the 4 FH-
WMs and the 4 activation statistics. Examining all the activation maps, we note
that the complex-valued AR(p) model-based statistic best identifies the anatomical
left central sulcus over each slice as long as some spatial smoothing is done. How-
ever, if the data are not smoothed in space, there is much less difference between
the activation maps of the four activation statistics.

We also computed activation maps using two other methodologies. We display
the maps for the fifth slice and smoothing FWHM = 4 voxels for direct comparison
to Figure 5. Figure S-7 displays the activation maps thresholded at the 5% false
discovery rate. Specifically, we applied the Benjamini and Yekutieli (2001) method
to the voxel-wise p-values and cluster thresholded the resulting q-values with a
third-order neighborhood structure, a size threshold of 11 voxels, and a significance
level threshold of 0.05. These maps look quite similar to Figure 5. Second, we
were motivated by a reviewer to examine maps based on assumed AR orders of
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FIG S-4. Activation images for slice 4 organized according to FWHM of kernel smoother (rows) and
activation statistic (columns).

1. He/she stated that from experience, the exact time series model does not matter
very much in terms of activation maps, as long as some type of AR model is used
instead of an independence assumption (and also pointed out mention of this point
in the documentation on the 3dREMLfit function in the Analysis of Functional
Neuroimaging (AFNI) (Cox, 1996, 2012) software). Thus, Figure S-8 displays the
complex-valued and magnitude-only model-based maps where p = 1 is assumed
at each voxel. Comparing these maps to Figure 5, it could be argued that the ΛM,1

map detects basically the same region of voxels as the ΛM,p̂M map. However, this
does not seem to be true for CV data-based LRTSs. The ΛC,p̂C map has lower p-
values inside the left functional central sulcus than the ΛC,1 map, but the latter has
lower p-values for voxels detected outside this region. This suggests the trouble of
detecting the AR order for the complex-valued model is worth the effort.
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FIG S-5. Activation images for slice 5 organized according to FWHM of kernel smoother (rows) and
activation statistic (columns).

S-3.3. Supplement to Section 4.4 – Effect of spatial smoothing on parameter
estimates. Several supplementary figures are described in the following. Figures
S-9 and S-10 are maps of the detected orders under the CV and MO models. re-
spectively, for the different amounts of spatial smoothing, and Figure S-11 shows
the corresponding frequency distributions. We note that p̂ = 0 (under both models)
for the vast majority of voxels for the unsmoothed data, but the detected orders in-
crease for smoothed data. Figure S-12 gives the images of the parameter estimates
not shown in Figure 6. The effect of spatial smoothing on these parameter estimates
is more predictable in that increased spatial smoothing decreases the resolution of
β̂0, β̂1, and θ̂ and decreases the noise standard deviations σ̂R and σ̂I (as expected
under the frameworks of Nencka, Hahn and Rowe, 2009; Rowe, 2016). Last, Fig-
ure S-13 shows, for different smoothing levels, the proportions of voxels in which
the null hypotheses H0 : σ2R = σ2I and H0 : ρ = 0 are rejected after controlling the
FDR at 0.05. For the unsmoothed data, it is evident that the assumptions of equal
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FIG S-6. Activation images for slice 6 organized according to FWHM of kernel smoother (rows) and
activation statistic (columns).

variances and independence of the real and imaginary components are reasonable
for the vast majority of voxels. However, these assumptions are rejected for sizable
proportions of voxels for the smoothed data, and the proportions increase with the
FWHM.

S-3.3.1. Derivations under simplifying assumptions. To clarify the discussion
in Section 4.4 on how model (4.1) supports the observed dependence of the pa-
rameter estimates on spatial smoothing, we provide some derivations under sim-
plifying assumptions. We will derive the real/imaginary correlation and the lag-
1 temporal autocorrelation1 within the real and imaginary time series and model
(4.1) and the following assumptions. First, we assume that the spatial context is
one-dimensional and that spatial smoothing is performed using a simple moving

1 The lag-1 temporal autocorrelation is equal to the AR(1) coefficient for a truly AR(1) time
series.
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FIG S-7. False discovery rate (FDR) thresholded activation maps corresponding to those in Figure
5.

  

  

  
  

  

  

  
  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  
  

  

  
  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  
  

  
  

  
  

  

  

  

  
  

  
  

  

  

  

  
  

  

  

  

  
  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  
  

  

  

  

  

  

  

  

  

(a) Complex-valued AR(1) model

  

  

  
  

  

  

  
  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  
  

  

  
  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  
  

  
  

  
  

  

  

  

  
  

  
  

  

  

  

  
  

  

  

  

  
  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  
  

  

  

  

  

  

  

  

  

(b) Magnitude-only AR(1) model
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FIG S-8. Activation maps for the finger-tapping experiment corresponding to Figure 5 where an AR
order of 1 is assumed for every voxel time series.
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FIG S-9. Images of the detected AR orders p̂C under the complex-valued model for slice 5, under (a)
the absence of spatial smoothing and (b-d) smoothing where the kernel has FWHMs = 2, 4, and 6
voxels.
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FIG S-10. Images of the detected AR orders p̂M under the magnitude-valued model for slice 5, under
(a) the absence of spatial smoothing and (b-d) smoothing where the kernel has FWHMs = 2, 4, and
6 voxels.
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FIG S-11. Frequency distributions of the complex-valued and magnitude-only fitted AR orders p̂C
and p̂M with (a) no smoothing and (b-d) when spatial smoothing is first performed with different
FWHMs.
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to right within each subfigure) spatial smoothing with FWHM = 0, 2, 4, and 6 voxels. (FWHM = 0
means no spatial smoothing.)

0.00

0.25

0.50

0.75

0 2 4 6

FWHM (voxels)

P
ro

po
rt

io
n 

re
je

ct
in

g 
H

0

H0

     σR=σI

ρ=0  

FIG S-13. Proportion of voxels rejecting H0 : σR = σI and H0 : ρ = 0 after controlling the FDR
at 0.05 for different levels of spatial smoothing (FWHMs).

average of length N (assumed to be odd such that N = 2k + 1 for k ∈ N) such
that spatial smoothing at time t results in the real/imaginary observations at voxel
s given by ỹRst = (1/N)

∑k
i=−k yR,s+i,t and ỹIst = (1/N)

∑k
i=−k yI,s+i,t. Next,

we assume that v = (v′1,v
′
2, . . . ,v

′
S)′, where vs = (vs1, . . . , vsn)′, is multivari-

ate normal with mean zero and a covariance matrix given as a Kronecker prod-
uct of spatial and temporal AR(1) covariance matrices. That is, we assume that
Cov(v) = σ2vRS ⊗ RT , where RS and RT are AR(1) correlation matrices of
orders S and n, respectively, based on the AR parameters αS and αT . Last, we
assume that wRst and wIst are i.i.d. N(0, σ2w), and θ = π/4 as specified by the
CV running line. Under this framework, the real/imaginary cross-correlation for
the unsmoothed data is ρ = Cor(yRst, yIst) = 0.5σ2v/(0.5σ

2
v + σ2w) and the lag-

1 autocorrelation is α1 = Cor(yRst, yRs,t−1) = Cor(yIst, yIs,t−1) = αTρ. Note
that these expressions support the statement that the fact that ρ̂ and α̂1 are close
to zero for the unsmoothed data suggests σ2w is larger than σ2v . When smooth-
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ing is applied, σ̃2w ≡ Var(w̃Rst) = Var(w̃Ist) = σ2w/N and σ̃2v ≡ Var(ṽst) =

(σ2v/N
2)
∑N

i=1

∑N
j=1 α

|i−j|
S , where the terms w̃Rst, w̃Ist, and ṽst are defined sim-

ilarly to ỹRst and ỹIst. When αS is positive, N <
∑N

i=1

∑N
j=1 α

|i−j|
S , which

supports the statement that the variance of the vsts is less affected by spatial av-
eraging than the (wRst, wIst)s. It can be shown that for the smoothed data, the
real/imaginary cross-correlation is ρ̃ = 0.5σ̃2v/(0.5σ̃

2
v + σ̃2w) and the lag-1 tempo-

ral autocorrelation is α̃1 = αT ρ̃. It then follows that ρ̃ and α̃1 increase with the
amount of spatial smoothing – given by the value of k. Figure S-14 displays values
of ρ̃ and α̃1 based on the above derivations for different k at σ2w = 1 and different
values of σ2v , αS , and αT .
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FIG S-14. Values of ρ̃ and α̃1 for different k at σ2
w = 1 and different values of σ2

v , αS , and αT ,
based on the derivations in Section S-3.3.1.

S-3.3.2. Effect of phase on parameter estimates. Parameter estimates includ-
ing ρ̂, σ̂R/σ̂I , and the difference between the first-order real and imaginary residual
autocorrelations (denoted by ω̂R − ω̂I ) are dependent on the choice of θ0. Figure
S-15 shows that the medians of these parameter estimates are constant at zero for
the unsmoothed data but are periodic in θ0 for the smoothed data, with an ampli-
tude that increases with the FWHM. Note that the periodicity of ρ̂ shares the phase
of sin 2θ while the periodicity of σ̂R/σ̂I and ω̂R − ω̂I shares the phase of cos 2θ.
In fact, we chose θ0 = π/4 because at this value the distribution of ω̂R − ω̂I is
centered around zero, which is necessary under the model assumption that the real
and imaginary errors share the same AR coefficients.

In the following, we show that the periodicity discussed above is expected under
model (4.1). Letting σ2v = Var(vst) and wRst and wIst be independent with equal
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FIG S-15. Plots showing the dependence of the distribution of (a) ρ̂, (b) σ̂R/σ̂I , and (c) ω̂R − ω̂I on
the central phase θ0 assigned to each voxel time series for different amounts of spatial smoothing.

variance σ2w and α1 = Cor(vst, vs,t−1), it can be shown that

ρ = Cor(yRst, yIst) =
σ2v sin 2θ

[σ4v sin2 2θ + 4σ2w(σ2v + σ2w)]1/2
,(S-14)

σ2R
σ2I

=
Var(yRst)
Var(yIst)

= 1 +
2σ2v cos 2θ

σ2v(1− cos 2θ) + 2σ2w
,(S-15)

ωR − ωI =
4α1σ

2
vσ

2
w cos 2θ

σ4v(1− cos2 2θ) + 4σ2w(σ2v + σ2w)
,(S-16)

and hence ρ shares the phase of sin 2θ. and σ2R/σ
2
I and ωR−ωI share the phase of

cos 2θ.

S-4. Supplement to Section 5 – Further Simulation-based Analyses.

S-4.1. Supplement to Section 5.1 – Calculation of the AUC. Denoting the test
statistics computed under H0 and Ha by {T0i}n0

i=1 and {Taj}na
j=1, respectively,
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Bamber (1975) computed the AUC as [
∑n0

i=1

∑na
j=1 1(T0i < Taj)]/n0na, where

1(A) is the indicator function taking the value 1 if A is true and 0 otherwise. A test
with higher AUC has greater ability to discriminate between statistics computed
underH0 andHa, as the above formula computes the proportion of null-alternative
statistic pairs in which the rule 1(T0i < Taj) discriminates the null and alternative
statistics correctly.

S-4.2. Supplement to Section 5.2 – Influence of central phase on AUC functions.
In the context of the simulation study in Section 5.2, the form of the power/AUC
functions in terms of σR/σI and ρ depends on the value of θ. This is evident from
Figure S-16, which shows the AUC functions corresponding to Figure 9(c) for
various values of θ (Note that Figure 9(c) was calculated with θ = π/4; further, the
corresponding power functions are not shown for the sake of brevity because they
show very similar patterns to the AUCs functions.) Two examples of θ-dependence
are as follows: first, while the AUCs are greater for negative ρ than positive ρ when
θ = π/4, the opposite is true when θ = −π/4. Second, when the value of σR/σI
increases, AUCs increase for θ = −π/2 but decrease for θ = 0. Before we analyze
these patterns, we emphasize that the AUCs for the CV model-based LRTs are
greater than or equal to their MO counterparts in all cases. Further, only in “special
cases” are the AUCs equal; some of these include when θ = ±π/4 and σR = σI
and when θ = −π/2 or 0 and ρ = 0.2

We use two methods to explain the dependence of the power/AUC functions
on σR/σI , ρ, and θ. The first involves visualizing the BOLD response and the
real/imaginary error distribution of model (3.2) in the complex plane. As shown
in Figure S-17, the BOLD response can be visualized as a periodic oscillation
around the baseline signal in the θ direction. Specifically, in each subfigure, the
large dashed circle centered at the origin has a radius that represents the magnitude
of the baseline signal. The point on this circle (in the θ direction from the origin)
represents the complex-valued baseline signal, and the double-headed arrow repre-
sents the oscillation of the BOLD response. Now, because the real/imaginary error
distribution is bivariate normal with covariance matrix Σ (3.3), constant probabil-
ity density contours are given by ellipses with major and minor axes in the direction
of the eigenvectors of Σ (Johnson and Wichern, 2007). These ellipses are shown
in Figure S-17 for different values of ρ assuming that σR = σI . When ρ > 0,
the major (i.e. longer) axis of the elliptical contours is in the π/4 direction and
the minor axis is in the −π/4 direction, and the direction of the major/minor axes
is reversed when ρ < 0. Heuristically, a larger “effective CNR” (and therefore a

2The latter case is not obvious because many of the lines in Figures S-16(a),(e) coincide: the top
line contains the AUCs for ρ = ±0.8 and the complex-valued model (only), the next line are for
ρ = ±0.4 and the complex-valued model (only), and the bottom line contains the AUCs for ρ = 0
and the complex-valued model and all values of ρ for the magnitude-only model.
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FIG S-16. Simulation-based plots showing the AUC for the complex-valued and magnitude-only
activation statistics in terms of σR/σI and ρ for different values of θ.
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FIG S-17. Pictorial representation of the effect of θ and ρ on the “effective CNR”.

larger power and AUC as well) results when the direction of the oscillation of the
BOLD response is aligned with the narrow (i.e. minor) axis than when it is aligned
with the major axis of the elliptical contours of the error distribution. This explains
why the power/AUC are greater for negative ρ than positive ρ when θ = π/4, as
in Figure 9(c) (see Figures S-17ab), but the reverse occurs when θ = −π/4 (see
Figures S-17cd).

The other explanation involves the (observed) Fisher information matrix, whose
block corresponding to β is given by

(S-17) Iββ =
1

2(1− ρ2)
X ′R−1n X

[
1

σ2R
cos2 θ +

1

σ2I
sin2 θ − 2ρ

σRσI
sin 2θ

]
.

For example, considering θ = 0, we see that Iββ decreases when σ2R increases.
It then follows that the standard error of β̂1 increases, that the significance of β1
decreases, and therefore that the power/AUC decreases as σ2R increases, as shown
in Figure S-16(e). In addition, the pairing and relative position of the ρ = ±0.4
and ±0.8 lines in Figure S-16(e) can be explained by the (1− ρ2) term in (S-17).

S-4.3. Supplement to Section 5.3 – Simulation study with higher AR order. To
examine the effect of temporal dependence of a higher AR order than one, we
simulated complex-valued time series with AR(3) errors with coefficients α =
(0.2, 0.2, 0.2). We computed the complex-valued AR(p) model-based LRT statis-
tics for activation based on orders of p = 0, 1, 2, 3, 4, 5 to examine the effect of
under- and over-specification of the order. The false positive rates using a signif-
icance level of 0.05 are given in Table S-3. As demonstrated in Section 5.3, the

AR order p 0 1 2 3 4 5
False detection rate 0.255 0.117 0.061 0.053 0.053 0.053

TABLE S-3
False detection rates of complex-valued model-based activation statistics based on AR orders of

p = 0, 1, 2, 3, 4, 5 for simulated complex-valued time series with a true order of 3.

18



FWHM ΛC,p̂C ΛM,p̂M ΛC,0 ΛM,0 True False

0

1 4 1 3 1 2 1 1

0.5

0.6

0.7

0.8

0.9

1.0

10−4

10−3

10−2

0.08

2

2 4 2 3 2 2 2 1

0.5

0.6

0.7

0.8

0.9

1.0

10−4

10−3

10−2

0.08

4

3 4 3 3 3 2 3 1

0.5

0.6

0.7

0.8

0.9

1.0

10−4

10−3

10−2

0.08

6

4 4 4 3 4 2 4 1

0.5

0.6

0.7

0.8

0.9

1.0

10−4

10−3

10−2

0.08

FIG S-18. True and false detection rates (corresponding to the legends at right) for the simulated
ROIs with parameter values corresponding to FWHM values at right as in Table 1.

false positive rates of the LRTSs assuming independence are inflated when there
is temporal dependence in the data. Further, we see in this study that even if AR
dependence is modeled, the false positive rate is also inflated if the order is under-
specified. However, the Type I Error rate is controlled appropriately the AR order
is specified correctly or over-specified.

S-4.4. Supplement to Section 5.4 – Examining a region of interest (ROI): more
details. We provide three sets of supplementary plots. First, Figure S-18 contains
maps of the true and false activation detection rates for all four of the parameter
sets in Table 1. These maps correspond to Figure 11, which shows the results for
the FWHM = 4 parameter set. Second, Figure S-19 gives quantile-quantile plots
comparing the bootstrap-based null distributions of the four statistics against the
theoretical χ2

1 distribution. These plots demonstrate that the independent-model-
based activation statistics do not follow the χ2

1 null distribution under H0 for the
parameter sets corresponding to the smoothed data. Last, Figure S-20 shows kernel
density estimates of the distributions of the Jaccard indices over ROI replications
for each statistic, which demonstrate the wide variability of the indices over repli-
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FIG S-19. Quantile-quantile plots comparing the null distributions of the two activation statistics
against the χ2

1 distribution for the four parameter sets (according to FWHMs) in Table 1.

cations.
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