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Abstract
Two developments in fMRI magnitude time series modeling, namely, the incorporation of temporal
dependence and the Ricean distribution, have been separated by a distributional “mismatch”: such
time series modeling is largely based upon Gaussian-distributional-based extensions to the general
linear model, which precludes its use under Ricean modeling. We bridge this gap by extending
independent AR(p) errors to the latent, Gaussian-distributed real and imaginary components from
which the Ricean-distributed magnitudes are computed by augmenting the observed magnitude data
by missing phase data in an EM algorithm framework. We use the EM algorithm for parameter
estimation and extend it to compute approximate standard errors and test statistics for activation and
AR order detection. When compared to the standard Gaussian AR(p) model, this “AR(p) Ricean
model” produces less-biased parameter estimates and similar performance on an experimental fMRI
dataset.

Key Words: EM algorithm, empirical information matrix, hemodynamic response function, Monte
Carlo integration, Rice distribution, von-Mises distribution

1. Introduction

Functional magnetic resonance imaging (fMRI) is a popular method for studying brain
function because it is noninvasive, requires no exposure to radiation, and is widely avail-
able. The imaging modality is built on the fact that when neurons fire in response to a
stimulus or a task, the blood oxygen levels in neighboring vessels changes, effecting the
magnetic resonance (MR) signal on the order of 2-3% (Lazar, 2008), due to the differing
magnetic susceptibilities of oxygenated and deoxygenated hemoglobin. This difference is
behind the so-called Blood Oxygen Level Dependent (BOLD) contrast (Ogawa et al., 1990;
Belliveau et al., 1991; Kwong et al., 1992; Bandettini et al., 1993) which is used as a sur-
rogate for neural activity and is used to acquire time-course sequences of images, with the
time-course in accordance with the stimulus and resting periods.

The general strategy to detect regions of neural activation is to fit, at each voxel, a model
— commonly a general linear model (Friston et al., 1995) — to the time series observations
against a transformation of the input stimulus: this transformation is the expected BOLD
response and is effectively modeled in terms of a convolution of the stimulus time course
with the hemodynamic response function (HRF), which measures the delay and dispersion
of the BOLD response to an instantaneous neuronal activation (Friston et al., 1994; Glover,
1999). This provides the setting for the application of techniques such as Statistical Para-
metric Mapping (SPM) (Friston et al., 1990), where the time series at each voxel is reduced
to a test statistic which summarizes the association between each voxel time course and the
expected BOLD response (Bandettini et al., 1993). The resulting map is then thresholded to
identify voxels that are significantly activated (Worsley et al., 1996; Genovese et al., 2002;
Logan and Rowe, 2004).
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Most statistical analyses focus on the magnitude data computed from the complex-
valued measurements resulting from Fourier reconstruction (Jezzard and Clare, 2001) and
discard the phase information. Because the real and imaginary measurements are well-
modeled as two independent normal random variables with the same variance (Wang and
Lei, 1994), these magnitude measurements follow the Rice distribution (Rice, 1944; Gud-
bjartsson and Patz, 1995). However, standard analyses assume that magnitude data are
Gaussian-distributed, even though the Gaussian approximation of the Rice distribution is
only valid at high signal-to-noise ratios (SNRs). This factor is increasingly important be-
cause the SNR is proportional to voxel volume (Lazar, 2008); thus an increase in the fMRI
spatial resolution will correspond to a lowering of the SNR, making the Gaussian distribu-
tional approximation for the magnitude data less tenable.

In its simplest form, analysis of magnitude fMRI time series assumes no autocorrela-
tion: however the naı̈veté of this assumption is widely recognized. There are many reasons
for this: one is that the hemodynamic response disperses (or “smears,” in fMRI jargon)
neural activation. The hemodynamic (or BOLD) response to a single neural activation
takes 15 to 20 seconds (Lazar, 2008), which is much longer than the sampling intervals
of many fMRI techniques – 100 ms-5 s for echo-planar imaging (EPI) techniques (Friston
et al., 1994). Further, the neuronal response, which can be modeled as a point response
or a delta function (Friston et al., 1994), is itself very fast when compared to the BOLD
response. Since fMRI experiments measure the BOLD response over time, the above dis-
cussion means that the observed time series within each voxel are correlated. Friston et al.
(1994) also contend that the neuronal process is composed of “intrinsic” neuronal activities
in addition to the stimulus-related response. Consequently, the authors say, autocorrela-
tions in the observed time series arise from two neural components, both measured through
the hemodynamic response: one that is experimentally induced owing to the stimulus and
another that is due to intrinsic neuronal activity. The first component is modeled by convo-
lution of the stimulus time course with the HRF, as discussed previously, while the second
is modeled with autocorrelation. Additional sources of autocorrelation are also provided
by the subject’s cardiac and respiratory cycles (Friston et al., 2000).

Precise modeling of this temporal correlation is essential to maintaining assumed sig-
nificance levels in tests for activation (Purdon and Weisskoff, 1998). Many analyses extend
the linear model by introducing autocorrelated errors (Lazar, 2008). Prewhitening these
errors is a common procedure, based on estimated autoregressive (AR) (Bullmore et al.,
1996; Marchini and Ripley, 2000) or autoregressive moving average (ARMA) (Locascio
et al., 1997) models, which produces the most efficient estimators. However, this approach
can bias significance levels (Friston et al., 2000; Woolrich et al., 2001), so temporal (Wors-
ley and Friston, 1995) and spatial (Worsley et al., 2002) smoothing have been recommended
for more robustness. Likelihood-based activation statistics, based on incorporating an AR
temporal correlation structure into the likelihood function, have also been proposed as a
less-biased alternative to prewhitening approaches (den Dekker et al., 2009).

The above approaches all make Gaussian distributional assumptions for the observed
magnitude time series, which as discussed before, is not appropriate, even approximately, at
low SNR. This has led to the development of Rice-distributed magnitude-data models (den
Dekker and Sijbers, 2005; Rowe, 2005; Solo and Noh, 2007; Zhu et al., 2009) which have,
understandably, shown improved power of detection over their Gaussian counterparts at
low SNR. These models, however, assume independence in the time series; incorporating
autocorrelation in Rice-based models is impeded by the fact that the above approaches,
such as ARMA modeling and prewhitening, are based on the Gaussian distribution.

In this paper, we develop a Ricean model for fMRI magnitude time series which incor-
porates AR(p) dependence. Due to the previously discussed “mismatch” between Gaussian-
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based time series techniques and Ricean-distributed magnitude data, we do not model the
magnitudes directly and instead utilize the fMRI data acquisition process as follows. Be-
cause the Rice distributed magnitude observations are computed from Gaussian distributed
real and imaginary components, we apply the AR(p) dependence to this latent complex-
valued data. In Section 2, because this complex-valued data is composed of observed
magnitudes and “missing” phase data, we present the model through an EM algorithm
(Dempster et al., 1977) framework and illustrate its use in parameter estimation; we also
illustrate computation of approximate standard errors of these parameter estimates and tests
for activation and AR order detection through extensions of the EM algorithm. We com-
pare these AR(p)-Ricean-model parameter estimates to those based upon a Gaussian AR(p)
model for simulated fMRI data in Section 3 and discuss our results in Section 4.

2. Methodology

We focus on the magnitude time series at a voxel, which we denote as r = (r1, . . . , rn),
where n is the number of scans. As discussed in Section 1, we incorporate autocorrelation
into a Ricean-distributed model for r by applying AR(p) errors to the real and imaginary
(Gaussian) time series, denoted yR = (yR1, . . . , yRn) and yI = (yI1, . . . , yIn), respec-
tively. After transforming the distribution of (yR,yI) to the magnitude-phase variables
(r,φ), where φ = (φ1, . . . , φn), we apply the EM algorithm to obtain maximum likeli-
hood estimates (MLEs) of model parameters, which we denote by τ . Because the phase
data φ is discarded in “magnitude-only” data analysis, the observed, missing, and complete
data of EM algorithm terminology are represented by r, φ, and (r,φ), respectively.

2.1 Parameter estimation via the EM algorithm

An iteration of the EM algorithm consists of the Expectation and Maximization steps (or
the E- and M-steps). At the (k + 1)th iteration, k ≥ 0, the E-step calculates the objec-
tive function Q(τ ; τ (k)) = Eφ|r,τ (k) [log f(r,φ; τ )], the expectation of the complete-data
log-likelihood with respect to the conditional distribution φ|r at the current parameter es-
timates τ (k). The M-step calculates the updated parameter values τ (k+1) by maximizing
Q(τ ; τ (k)) with respect to τ ; that is, τ (k+1) = argmaxτ Q(τ ; τ (k)). In the following para-
graphs, we illustrate the E- and M-steps involved in computing MLEs for AR(p)-Ricean-
model parameters.

We begin our E-step description with the complete-data log-likelihood function, which
results from applying AR(p) errors to the complex-valued data model of Rowe and Logan
(2004), (

yR
yI

)
=

(
X 0
0 X

)(
β cos θ
β sin θ

)
+

(
ηR
ηI

)
, (1)

where the n × q design matrix X models effects such as the baseline signal level, signal
drift, and the expected BOLD response, and θ represents the constant mean of the phase
time seriesφ. (Note that since magnitude time series contain no phase information, θ is nei-
ther known nor estimated.) The error terms ηR = (ηR1, . . . , ηRn) and ηI = (ηI1, . . . , ηIn)
are independent AR(p) time series parameterized by AR coefficients α = (α1, . . . , αp)
and white noise variance σ2; that is, for t = 1, . . . , n, ηRt =

∑p
i=1 αiηR,t−i + εRt and

ηIt =
∑p

i=1 αiηI,t−i + εIt, with εRt, εIt ∼ iid N(0, σ2). We also denote γj as the lag-j
autocovariance, j = 0, . . . , p, and use (γ0, . . . , γp) as an alternative parameterization of
(α, σ2), obtained via the Yule-Walker equations (Shumway and Stoffer, 2006). Addition-
ally, we define Rn such that Cov(ηR) = Cov(ηI) = σ2Rn. The AR order p, which is
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assumed known in this model formulation, can be chosen using the order selection proce-
dure described in Section 2.2. Thus, the complete-data log-likelihood is

log f(yR,yI ; τ ) = −n log σ2 − log |Rn| − h/2σ2, (2)

where h = α̃′Dα̃, α̃ being the (p+1)-vector (1,−α1, . . . ,−αp) andD the (p+1)×(p+1)

symmetric matrix with (i, j)th entry dij =
∑n−i−j

t=1 [ηR,t+iηR,t+j + ηI,t+iηI,t+j ], 0 ≤
i, j ≤ p (Pourahmadi, 2001). To transform the complete log-likelihood function from
real-imaginary to magnitude-phase variables, we apply the relations yRt = rt cosφt and
yIt = rt sinφt, t = 1, . . . , n, to dij , which produces dij =

∑n−i−j
t=1 rt+irt+j cos(φt+i −

φt+j)−µt+irt+j cos(φt+j− θ)−µt+jrt+i cos(φt+i− θ) +µt+iµt+j , where µt = x′tβ, x′t
being the tth row of X . In view of (2) and this expression for dij , we note that the E-step
involves two categories of expectations: the univariate expectations E[cos(φt−θ)|rt, τ (k)],
t = 1, . . . , n, and the bivariate expectations E[cos(φt − φt+j)|rt, rt+j , τ (k)], j = 1, . . . , p,
t = 1, . . . , n− j.

The former expectations are with respect to the von-Mises distribution VM(·, ·), which
is defined in Appendix A. It can be shown that φt|rt, τ (k) is von-Mises by transforming
(yRt, yIt), which are independent and follow N(µ

(k)
t cos θ, γ

(k)
0 ) and N(µ

(k)
t sin θ, γ

(k)
0 )

distributions, to the variables (rt, φt). This gives f(φt|rt, τ (k)) ∝ exp{µ
(k)
t rt

γ
(k)
0

cos(φt−θ)},

where µ(k)t = x′tβ
(k), which, as seen in Appendix A, is the probability density function

(PDF) of the VM(θ, µ
(k)
t rt/γ

(k)
0 ) distribution. Thus, again following from Appendix A,

the univariate expectations E[cos(φt − θ)|rt, τ (k)] = A(µ
(k)
t rt/γ

(k)
0 ), t = 1, . . . , n, where

A(·) = I1(·)/I0(·), Ij(·) being the jth order modified Bessel function of the first kind
(Abramowitz and Stegun, 1965).

The bivariate expectations can be approximated via univariate Monte Carlo integration
as follows. First, we generate ψ(1), . . . , ψ(m) ∼ iid VM(0, µ

(k)
t rt/γ

(k)
0 ), which can be ef-

ficiently accomplished through the rejection sampling algorithm of Best and Fisher (1979).
The expectation E[cos(φt − φt+j)|rt, rt+j , τ (k)] is then approximated as

1

m

m∑
i=1

A(K(i))

K(i)
[κ∗ cosψ(i) + δ], (3)

whereK(i) =
√
κ∗2 + δ2 + 2κ∗δ cosψ(i), κ∗ = rt+j(γ

(k)
0 µ

(k)
t+j−γ

(k)
j µ

(k)
t )/(γ

2(k)
0 −γ2(k)j ),

and δ = γ
(k)
j rtrt+j/(γ

2(k)
0 − γ2(k)j ). See Appendix B for a derivation of (3).

To summarize, the E-step replaces the h-term in (2) by its expectation, which we denote
by h(k) = α̃′D(k)α̃, whereD(k) is a (p+1)×(p+1) symmetric matrix with (i, j)th entry

d
(k)
ij =

n−i−j∑
t=1

{
rt+irt+jE[cos(φt+i − φt+j)|rt+i, rt+j , τ (k)]−

µt+irt+jA(rt+jµ
(k)
t+j/γ

(k)
0 )− µt+jrt+iA(rt+iµ

(k)
t+i/γ

(k)
0 ) + µt+iµt+j

}
.

(4)

Also, to prepare for the M-step, we represent the β-dependent portion of h(k) as h(k)(β) =

β′X ′R−1n Xβ−2β′X ′R−1n Xu
(k), whereu(k) is a vector of length nwith tth entry u(k)t =

rtA(µ
(k)
t rt/γ

(k)
0 ), t = 1, . . . , n.

Because the M-step does not have a closed form, we obtain τ (k+1) through three con-
ditional maximization steps as described in the ECM algorithm of Meng and Rubin (1993).
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First, given β(k), we calculate α(k+1) from the equations (which modify Miller, 1995)

p∑
j=1

(
d
(kk)
ij + 2jγ

(kk)
|j−i|

)
αj = d

(kk)
i0 , i = 1, . . . , p, (5)

where d(kk)ij substitutes µ(k)t for µt, t = 1, . . . , n, in (4) and γ
(kk)
j = d

(kk)
0j /(2n) esti-

mates the lag-j autocovariance, j = 0, . . . , p. Second, conditioned onα(k+1), we calculate
β(k+1) as β(k+1) = (X ′R

−1(k+1)
n X)−1X ′R

−1(k+1)
n u(k), which follows from minimiz-

ing the expression for h(k)(β) in the previous paragraph, where R−1(k+1)
n is calculated

from α(k+1) (Pourahmadi, 2001). Finally, we calculate σ2(k+1) = h(k,k+1)/(2n), where
h(k,k+1) substitutes (α(k+1),β(k+1)) for (α,β) in h(k). To complete the EM algorithm,
we calculate γ(k+1)

j , j = 0, . . . , p, from (α(k+1), σ2(k+1)) and the Yule-Walker equations
for use in the next E-step.

To compute starting values, we used the independent Ricean model, which itself em-
ploys an EM algorithm (Solo and Noh, 2007), to compute (β(0), σ2(0)) and set α(0) = 0.
To save computation time, we use fewer Monte Carlo samples m for initial iterations and
increase m as the algorithm moves closer to convergence, as advocated by Wei and Tanner
(1990). Also, due to the randomness associated with each EM step, we assumed con-
vergence if the convergence criterion was satisfied for three (instead of two) consecutive
iterations (Booth and Hobert, 1999), which produced the (approximate) MLE τ̂ .

2.2 Calculation of standard errors and test statistics

We utilize the Fisher information matrix for calculation of approximate standard errors
for the MLEs. However, because the observed-data likelihood function is intractable in
this case, we use the empirical information matrix (Meilijson, 1989), an estimate of the
Fisher information matrix which can be calculated from the complete-data likelihood and
its expectation under the E-step. More specifically, the empirical information matrix is the
sum over independent observations of outer products of the score statistics, where each
(observed-data) score statistic can be calculated as the expectation of the corresponding
complete-data score statistic with respect to the distribution of the missing data conditioned
on the observed data. In our context, we do not have independence, but we can exploit the
fact that AR(p) processes have a conditional independence structure which provides simi-
lar factoring of the likelihood: when conditioned on the first p observations, the complete
data consists of n − p conditionally independent (complex-valued) observations; that is,
(rt, φt)|(rt−1, φt−1), . . . , (rt−p, φt−p), which we abbreviate as [r,φ]t|t−p, are independent
for t = p + 1, . . . , n. Similarly denoting [r]t|t−p as rt|rt−1, . . . , rt−p, the empirical in-
formation matrix is given by Ie(τ̂ ; r) =

∑n
t=p+1 s([r]t|t−p; τ̂ )s′([r]t|t−p; τ̂ ), where the

score statistic s([r]t|t−p; τ̂ ) can be calculated as Eφ|r,τ̂ [s([r,φ]t|t−p; τ )]τ=τ̂ , the expec-
tation of s([r,φ]t|t−p; τ ) = ∂/∂τ logL([r,φ]t|t−p; τ ). More details on this calculation
are given in Appendix C. For verification, we also estimated the Fisher information matrix
using Louis’s method (Louis, 1982). Following standard practice, approximate standard
errors for τ̂i, i = 1, . . . , q + p + 1, are given by {I−1e (τ̂ ; r)τiτi}1/2, the square-root of the
diagonal entry of I−1e (τ̂ ; r) corresponding to τ i.

Wald statistics for activation and order detection follow from the information matrix.
We generally pose the test for activation as H0 : Cβ = 0 vs. Ha : Cβ 6= 0, which has
corresponding Wald statistic (Cβ̂)′[CI−1e (τ̂ ; r)ββC

′]−1(Cβ̂), where I−1e (τ̂ ; r)ββ refers
to the q × q block of I−1e (τ̂ ; r) corresponding to β. This statistic has an asymptotic χ2

null distribution with degrees of freedom equal to the rank of C. We utilize a sequential
hypothesis testing procedure (similar to forward model selection in regression modeling)
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for order detection, in which the detected order p̂ = i′− 1, where i′ is the smallest i, i ≥ 1,
such that a test of H0 : αi = 0 vs. Ha : αi 6= 0 does not reject H0. A Wald statistic for
this test is given by α̂2

i /I
−1
e (τ̂ ; r)αiαi , where α̂i and I−1e (τ̂ ; r)αiαi are computed under

the AR(i) Ricean model, which follows an asymptotic χ2
1 null distribution.

2.3 Gaussian Autoregressive model

We compare the parameter estimates and test statistics derived under the AR(p) Ricean
model to those based on a standard Gaussian AR(p) model. In this Gaussian model, r =
Xβ + ε, where X is the same as before and ε follows an AR(p) dependence structure
parameterized by α and σ2. The MLEs of β, α, and σ2 can be obtained according to
Cochrane and Orcutt (1949). For comparison with the test statistics derived in Section 2.2,
the Gaussian AR(p) model test statistics are also calculated as Wald statistics which utilize
the empirical information matrix.

3. Experimental Evaluations

We generated Ricean-distributed magnitude time series of length n = 256 by simulating

from (1) and computing rt =
√
y2Rt + y2It for t = 1, . . . , 256. The design matrix X con-

tained q = 2 columns, which included an intercept term to model the baseline signal and
a ±1 square wave alternating every 16 time points to model the expected BOLD response.
Thus, in β = (β0, β1), only β1 was activation-related, so the test for activation was posed
as H0 : β1 = 0 vs. Ha : β1 6= 0 and the corresponding activation test statistic follows an
asymptotic χ2

1 null distribution. We maintained σ2 = 1.0 over all simulations for simple
interpretation of the signal-to-noise ratio SNR = β0/σ. We varied β0 from 0.4 to 10 to
examine low SNR values (most fMRI data has SNR above 10) and used β1 = 0.2 and 0.0
to represent activated and non-activated voxel time series, respectively. We applied AR(1)
dependence with AR coefficient values α1 = 0.2, 0.4, and 0.6 and fit AR(1) models to
all time series. We simulated 100,000 magnitude time series at each collection of param-
eter values and computed MLEs, standard error estimates, and (activation and AR order
detection) test statistics under Ricean and Gaussian models as described in Section 2. Im-
plementation of the AR(1) Ricean-model EM algorithm included ten preliminary iterations
generating m = 2 Monte Carlo samples per expectation, followed by iterations utilizing
m = 10 samples until convergence was reached.

First, we examine the biases of the Ricean and Gaussian-model MLEs, which are plot-
ted against β0 (or alternatively, SNR) in Figure 1. Of the two models, the Ricean-model
estimates show less bias; the Gaussian-model estimates become increasingly biased as the
SNR decreases due to the worsening Gaussian approximation of the Rice distribution dis-
cussed in Section 1. Further, we note that these (Gaussian-model) biases increase with α1

and attribute this to decreasing SNR as well: as α1 increases, the SNR decreases due to
the increasing variance of AR(1) processes, which is given by γ0 = σ2/(1− α2

1). Though
the opposite is true for the Gaussian-model estimate of σ2, we argue that this effect is
“artificial” and due to the bias of α̂1 increasing with α1.

4. Discussion

In this paper, we developed the first Ricean model for fMRI magnitude time series that
incorporates time dependence. We used an indirect (but natural) approach, applying AR(p)
errors to the Gaussian-distributed real and imaginary components from which the mag-
nitudes are computed. We modeled the latent complex-valued data by augmenting the
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Figure 1: Biases of the AR(1) Ricean- and Gaussian-model parameter estimates are plotted
against β0 (or alternatively, SNR) for different values of α1.

observed magnitude data by missing phase data according to an EM algorithm framework,
which we used to calculate parameter estimates, standard errors, and test statistics for ac-
tivation and AR order detection. We showed that this AR(p) Ricean model produces less-
biased parameter estimates than its standard AR(p) Gaussian counterpart.

A. The von-Mises distribution

If ϕ follows the von-Mises distribution VM(θ0, κ), where θ0 is the mean direction and κ
is the concentration parameter, the PDF of ϕ is given by

f(ϕ|θ0, κ) = [2πI0(κ)]−1 exp[κ cos(ϕ− θ0)], (6)

for ϕ ∈ (−π, π), θ0 ∈ (−π, π), and κ > 0 (Mardia and Jupp, 2000), Ij(·) being the
jth order modified Bessel function of the first kind (Abramowitz and Stegun, 1965). In
the E-step, we use the von-Mises expectations E(cosϕ) = A(κ) cos θ0 and E(sinϕ) =
A(κ) sin θ0, where A(·) = I1(·)/I0(·), as well as the location-family property that ϕ ∼
VM(θ0, κ) =⇒ (ϕ− θ0) ∼ VM(0, κ).

B. Derivation of Monte Carlo approximation

The Monte Carlo approximation (3) for E[cos(φt − φt+j)|rt, rt+j , τ (k)], j = 1, . . . , p,
t = 1, . . . , n− j, follows from the expansion

Eφt|rt,τ (k){cos(φt − θ)E∗[cos(φt+j − θ)] + sin(φt − θ)E∗[sin(φt+j − θ)]}, (7)
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where E∗[·] denotes expectation with respect to φt+j |φt, rt, rt+j , τ (k). We show that the
latter is von-Mises-distributed by transforming (yRt, yR,t+j) and (yIt, yI,t+j), which are
independent and bivariate normal with means (µ

(k)
t , µ

(k)
t+j) cos θ and (µ

(k)
t , µ

(k)
t+j) sin θ, re-

spectively, and (the same) covariance matrix with diagonal and off-diagonal entries γ(k)0

and γ(k)j , to magnitude-phase variables. It can then be shown that

f(φt+j |φt, rt, rt+j , τ (k)) ∝ exp [κ∗ cos(φt+j − θ) + δ cos(φt − φt+j)] , (8)

where κ∗ and δ are as in Section 2.1. After combining the bracketed portion of (8) into a
single cosine term, it is evident that φt+j |φt, rt, rt+j , τ (k) ∼ VM(Ψ(φt),K(φt)), where
Ψ(φt) = arctan{δ sin(φt−θ)/[κ∗+δ cos(φt−θ)]} andK(φt) = {κ∗2+δ2+2κ∗δ cos(φt−
θ)}1/2. Using this distribution to compute the expectations E∗[·] in (7) and simplifying, we
obtain

Eφt|rt,τ (s)

{
A(K(φt))

K(φt)
[κ∗ cos(φt − θ) + δ]

}
. (9)

Because this expectation does not have a closed form, we approximate it by Monte Carlo
integration, simulating from (φt− θ)|rt, τ (k) ∼ VM(0, µ

(s)
t rt/γ

(k)
0 ) and averaging as is in

(3).

C. Calculation of empirical information matrix

To illustrate the calculation of s([r]t|t−p; τ̂ ) = Eφ|r,τ̂ [∂/∂τ log f([r,φ]t|t−p; τ )]τ=τ̂ , t =
p+1, . . . , n, we begin with deriving log f([r,φ]t|t−p; τ ). By transforming the distributions
of [yR]t|t−p and [yI ]t|t−p (following the notation in Section 2.2), which are independent
and normal with respective means µt cos θ +

∑p
i=1 αi(yR,t−i − µt−i cos θ) and µt sin θ +∑p

i=1 αi(yI,t−i − µt−i sin θ) and variances σ2, to magnitude-phase variables, it can be
shown that log f([r,φ]t|t−p; τ ) = − log σ2 − ht/(2σ2), where ht = α̃′Dtα̃, Dt being
a (p + 1) × (p + 1) matrix with (i, j)th-entry dt(i, j) = rt−irt−j cos(φt−i − φt−j) −
µt−irt−j cos(φt−j−θ)−µt−jrt−i cos(φt−i−θ)+µt−iµt−j , 0 ≤ i, j ≤ p, and α̃ as before.
After computing derivatives with respect to the parameters, the expectation involves the two
types of expectations described in Section 2.1.
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