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Abstract
A complex-valued model with AR(p) errors is proposed as an alternative to the more common

Gaussian-assumed magnitude-only AR(p) model for fMRI time series. Likelihood-ratio-test-based
activation statistics are derived for both models and are compared in terms of activation detection
and false discovery rates for simulated and experimental data. For simulated data, the complex-
valued AR(p) model likelihood-ratio activation statistic show superior power of activation detection
at low signal-to-noise ratios and lower false discovery rates. Also, when applied to an experimental
data set, the activation map produced by the complex-valued AR(p) model more clearly identifies
the primary activation regions. Our results advocate the use of the complex-valued data and the
Gaussian AR(p) model as a more efficient and reliable tool in fMRI experiments over the current
practice of using only the magnitude dataset.

Key Words: Bilateral finger-tapping motor experiment, Cochran-Orcutt estimation procedure,
contrast-to-noise ratio, hemodynamic response function, partial autocorrelation function, phase in-
formation, Rice distribution, signal-to-noise ratio

1. Introduction

Functional magnetic resonance imaging (fMRI) is a popular method for studying brain
function because it is noninvasive, requires no exposure to radiation, and is widely avail-
able. The imaging modality is built on the fact that when neurons fire in response to a
stimulus or a task, the blood oxygen levels in neighboring vessels changes, effecting the
magnetic resonance (MR) signal on the order of 2-3% (Lazar, 2008), due to the differing
magnetic susceptibilities of oxygenated and deoxygenated hemoglobin. This difference is
behind the so-called Blood Oxygen Level Dependent (BOLD) contrast (Bandettini et al.,
1993; Belliveau et al., 1991; Kwong et al., 1992; Ogawa et al., 1990) which is used as a
surrogate for neural activity and is used to acquire time-course sequences of images, with
the time-course in accordance with the stimulus and resting periods.

Each MR image is obtained in a series of steps from the so-called k-space data which
encodes different frequency contributions to each voxel. The different frequencies result
from magnetic field gradients (Jezzard and Clare, 2001) and need to be inverted to localize
measurements at each voxel. This is achieved by applying the inverse Fourier transform
(Jain, 1989) on the k-space data, which results in a complex-valued observation at each
voxel and each time-point. Thus, acquired fMRI (and MR) data at each voxel and time-
point can, in reality, be written in terms of its real and imaginary (alternately, magnitude
and phase) components. The real and imaginary components of the acquired voxel-wise
MR signal are well-modeled as two independent normal random variables with the same
variance (Wang and Wei, 1994). This implies that the magnitude measurements follow the
Rice distribution (Gudbjartsson and Patz, 1995; Rice, 1944), which is well-approximated
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by the normal distribution at high signal-to-noise ratio (SNR), but not so when the SNR is
low.

Acquired MR datasets have typically used the magnitude measurements at each voxel
for display and analysis. This practice of using only the magnitude data while discarding
the phase at each voxel has carried over to fMRI practice so much so that the vast ma-
jority of statistical analyses of such data completely ignore the phase data and base their
inferences on only the magnitude time series at each voxel (Rowe and Logan, 2004, 2005).
Thus, even though additional (phase) information is available, analysis in fMRI has almost
exclusively focused on the time series of the magnitude MR data at each voxel. Indeed,
as we discuss in our review of current fMRI practice, many of the methods used in such
analyses assume that the magnitude time series are normally distributed, even though such
observations may not all be obtained at high SNR.

Under the framework outlined above, the general strategy is to fit, at each voxel, a
model — commonly a general linear model (Friston et al., 1995) – to the time series obser-
vations against a transformation of the input stimulus: this transformation is the expected
BOLD response and is effectively modeled in terms of a convolution of the stimulus time
course with the hemodynamic response function (HRF), which measures the delay and dis-
persion of the BOLD response to an instantaneous neuronal activation (Friston et al., 1994;
Glover, 1999). This provides the setting for the application of the Statistical Parametric
Mapping (SPM) technique of Friston et al. (1990) which was originally developed to an-
alyze Positron Emission Tomography (PET) time course data, but which has since been
extended to become one of the most popular approaches to analyzing fMRI data. The time
series at each voxel is thus reduced to a test statistic at each voxel, which summarizes the
association between each voxel time course and the expected BOLD response (Bandettini
et al., 1993). The resulting map is then thresholded to identify voxels that are significantly
activated (Genovese et al., 2002; Logan and Rowe, 2004; Worsley et al., 1996).

In its simplest form, the above analysis assumes no autocorrelation within the time se-
ries: however it is widely realized that this assumption is not supported in reality. There
are many reasons for this: one is that the hemodynamic response disperses (or “smears”, in
fMRI jargon) neural activation. The hemodynamic (or BOLD) response to a single neural
activation takes 15 to 20 seconds (Lazar, 2008), which is much longer than the sampling
intervals of many fMRI techniques – 100 ms-5 s for echo-planar imaging (EPI) techniques
(Friston et al., 1994). Since fMRI experiments measure the BOLD response over time,
the above discussion means that the observed time series within each voxel are correlated.
Friston et al. (1994) also contend that the neuronal process is composed of “intrinsic” neu-
ronal activities in addition to the stimulus-related response. Consequently, the authors say,
autocorrelations in the observed time series arise from two neural components, both mea-
sured through the hemodynamic response: one that is experimentally induced owing to the
stimulus and another that is due to intrinsic neuronal activity. The first component is mod-
eled by the convolution of the stimulus time course with the HRF, as discussed previously,
while the second is present even in the absence of stimuli.

Precise modeling of this temporal correlation is essential to maintaining assumed sig-
nificance levels in tests for activation (Purdon and Weisskoff, 1998). Many analyses extend
the linear model by introducing autocorrelated errors (Lazar, 2008). Prewhitening these
errors is a common procedure, based on estimated autoregressive (AR) (Bullmore et al.,
1996; Marchini and Ripley, 2000) or autoregressive moving average (ARMA) (Locascio
et al., 1997) models, and leading to the most efficient estimators. However, this approach
can bias significance levels (Friston et al., 2000; Woolrich et al., 2001), so temporal (Wors-
ley and Friston, 1995) and spatial (Worsley et al., 2002) smoothing have been recommended
for more robustness. Likelihood-based activation statistics, based on incorporating an AR
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temporal correlation structure into the likelihood function, have also been proposed as a
less-biased alternative to prewhitening approaches (den Dekker et al., 2009).

The above approaches all make Gaussian distributional assumptions for the observed
magnitude time series, which as discussed before, is not appropriate, even approximately,
at low SNR. This has led to the development of Rice-distributed magnitude-only models
(den Dekker and Sijbers, 2005; Rowe, 2005; Zhu et al., 2009) which have, understandably,
shown improved power of detection over their Gaussian counterparts at low SNR. Incor-
porating autocorrelation directly in the Rice-based models is however complicated, and the
prewhitening approaches discussed above do not apply since they are based on Gaussian-
distribution-based extensions of the linear model.

A different approach, advocated by Nan and Nowak (1999) and Rowe and Logan
(2004), encourages use of both the magnitude and the phase (i.e., complex-valued) data
in the analysis. Noting that both components of the data are all acquired, just not used,
these authors have also demonstrated that complex-valued statistical analyses of voxel time
series show a greater power of activation detection than Gaussian-distribution-assumed
magnitude-only (henceforth referred to as magnitude-only in this paper, unless otherwise
specified) analyses at low SNRs. In simulation studies that assume independent errors,
complex-valued models have shown increased detection power over magnitude-only mod-
els at low SNR (of less than 5, and sometimes even as high as 7.5), and the two have
shown comparable detection power at high SNR (Rowe and Logan, 2004). In addition,
magnitude-only models yield biased parameter estimates at low SNR: even for large SNR,
the variance of the residual variance estimates is twice that obtained with the complex-
valued model (Rowe, 2005). These results are due to two shortcomings of magnitude-only
data analysis; first, half the data is discarded, which causes the larger variance of resid-
ual variance estimates under the magnitude-only model. Secondly, as mentioned earlier,
the approximate Gaussian distributional assumption for Rice-distributed magnitude data is
poor at low SNR. This factor is increasingly important because the SNR is proportional to
voxel volume (Lazar, 2008). Thus an increase in the fMRI spatial resolution will corre-
spond to a lowering of the SNR, making the Gaussian distributional approximation for the
magnitude data even less tenable.

In this paper, we further develop the complex-valued time series analysis of fMRI data.
Our showcase application is a dataset from a finger-tapping experiment introduced in Sec-
tion 2. We use this application as the context within which we introduce methodology
that applies an AR(p) dependence structure to the real and imaginary error vectors of the
model in Rowe and Logan (2004). We derive likelihood-based activation statistics based
on this model in Section 3 and compute them for both simulated and real fMRI datasets
in Sections 4 and 5, respectively. We also compute similar activation statistics under a
Gaussian-distributed magnitude-only model with AR(p) errors. After applying threshold-
ing procedures, we compare the performance of the two statistics in terms of detection
probability and control of false positive and false discovery rates. We discuss these results
in Section 6.

2. Motivating Example: Activation Detection in a Finger-Tapping Experiment

Our showcase application for this paper comes from a commonly-performed bilateral se-
quential finger-tapping experiment, as studied in Rowe and Logan (2004). In this case, the
MR images were acquired while the (normal healthy male) volunteer subject was instructed
to either lie at rest or to rapidly tap fingers of both hands (hence bilateral) at the same time.
The fingers were tapped sequentially in the order of index, middle, ring and little fingers.
The experiment consisted of a block design with 16 s of rest followed by eight “epochs” of
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16 s tapping alternating with 16 s of rest. MR scans were acquired once every second, re-
sulting in 272 images. For this dataset, the complex and imaginary components of the time
series images were not discarded, but stored along with the magnitude image commonly
used in traditional fMR analysis. (Note that traditionally, only the magnitude images are
used in fMRI analysis, while the phase images are discarded.) For simplicity, we restrict at-
tention in this paper to a single axial slice through the motor cortex consisting of 128×128
voxels. A dataset on a well-studied paradigm such as this provides us with as close to a
“known” detected activation area as is possible in fMRI: numerous studies have confirmed
activation in the sensori-motor finger area cortex in the central sulcus. Thus, this dataset
provides us with an ideal case study for both developing and evaluating new methodology.

3. Methodological Development

We focus on the complex-valued time series at a voxel, which comprises of real and imag-
inary time series observations, respectively denoted in this paper as yR = (yR1, . . . , yRn)

′

and yI = (yI1, . . . , yIn)
′, with n being the number of scans. For notational simplicity here,

we suppress voxel-related subscripts, and denote the voxel-wise magnitude time series data

as r = (r1, . . . , rn)
′, where rt =

√
y2Rt + y2It, t = 1, . . . , n. We first briefly discuss the

magnitude-only model. In doing so, we also introduce broadly the setup of our experiment.
As discussed in Section 1, magnitude-only fMRI time series observations at a voxel are

often analyzed by extending the linear model r = Xβ + ε where ε is assumed to be mul-
tivariate normally distributed with an AR(p) dependence structure (Bullmore et al., 1996;
Marchini and Ripley, 2000; Worsley et al., 2002). The design matrix X is of order n × q
with columns representing the baseline signal, signal drift, and the expected BOLD re-
sponse. The AR(p) distribution of ε is parameterized by AR coefficients α = (α1, . . . , αp)
and white noise variance σ2. Under this setting, the log-likelihood function is given by
logL(α,β, σ2|r) = −n

2 log σ
2 − 1

2 log |Rn| − 1
2σ2 (r −Xβ)′R−1n (r −Xβ), where Rn

is the n × n matrix such that σ2Rn = Cov(ε). Unrestricted maximum likelihood esti-
mates (MLEs) of the parameters β and σ2 are then given by β̂ = (X ′R̂

−1
n X)−1X ′R̂

−1
n r

and σ̂2 = (r − Xβ̂)′R̂−1n (r − Xβ̂)/n, respectively, with R̂
−1
n given as a function of

α̂, i.e. as the MLE of α (Pourahmadi, 2001). We obtain α̂ by solving the system of
equations:

∑p
j=1(d̂jk + jγ̂j−k)α̂j = d̂0k, for k = 1, . . . , p, as in Miller (1995), where

d̂ij =
∑n−i−j

t=1 ε̂t+iε̂t+j , for 0 ≤ i, j ≤ p, and γ̂k = d̂0k/n, k = 0, . . . , p − 1, is the lag k
sample autocovariance. In the preceding discussion, ε̂t = rt−x′tβ̂, where x′t is the tth row
of X , t = 1, . . . , n. The estimation procedure, due to Cochrane and Orcutt (1949), begins
with R̂n = In, the identity matrix of order n × n, and then iteratively updates β̂, α̂, and
R̂
−1
n until convergence.

A general hypothesis test for activation can be framed asH0 : Cβ = 0 vs. Ha : Cβ 6=
0. (Note that this formulation of the alternative allows for “negative activation” in response
to the fMRI stimulus/task at the voxel.) The likelihood ratio test (LRT) statistic is given by

− 2 log λM = n log

(
σ̃2

σ̂2

)
− log

(∣∣∣R̃−1p ∣∣∣ / ∣∣∣R̂−1p ∣∣∣) , (3.1)

where σ̃2 and α̃ are restricted MLEs underH0 and where R̂
−1
p and R̃

−1
p are functions of α̂

and α̃, respectively, as in Pourahmadi (2001). The null distribution of the LRT statistic (3.1)
is asymptotically χ2

m with m = rank(C).
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3.1 AR(p) modeling for complex-valued fMRI time series data

Following Rowe and Logan (2004), our model for complex-valued fMRI voxel time series
is (

yR
yI

)
=

(
X 0
0 X

)(
β cos θ
β sin θ

)
+

(
ηR
ηI

)
. (3.2)

This formulation means that the real and imaginary time series have phase-coupled means
according to a central phase θ, fixed in the time series but allowed to vary between voxels.
As before, the n × q design matrix X contains columns to model baseline level, signal
drift, and expected BOLD response. The real and imaginary error vectors, ηR and ηI ,
are assumed to be independent and Gaussian-distributed with Cov(ηR) = Cov(ηI) = Σ.
Rowe and Logan (2004) specify that Σ = σ2In, assuming that existing correlations in
the time series have been removed by the prewhitening procedure outlined in their paper.
However, we assign an AR(p) process to the real and imaginary errors, with AR coefficients
α and white noise variance σ2. Define Rn such that σ2Rn = Cov(ηR) = Cov(ηI).
Under this framework, the log-likelihood function is given by logL(α,β, θ, σ2|yR,yI) =
−n log σ2 − log |Rn| − h/2σ2, where

h =

(
yR −Xβ cos θ
yI −Xβ sin θ

)′(
R−1n 0
0 R−1n

)(
yR −Xβ cos θ
yI −Xβ sin θ

)
. (3.3)

The MLE for β is β̂ = β̂R cos θ̂ + β̂I sin θ̂, where β̂R = (X ′R̂
−1
n X)−1X ′R̂

−1
n yR

and β̂I = (X ′R̂
−1
n X)−1X ′R̂

−1
n yI , and R̂

−1
n is again a function of α̂ as in Pourahmadi

(2001). The MLE for θ is given by

θ̂ =
1

2
arctan

[
2β̂
′
RX

′R̂
−1
n Xβ̂I

β̂
′
RX

′R̂
−1
n Xβ̂R − β̂

′
IX
′R̂
−1
n Xβ̂I

]
, (3.4)

while that for σ2 is σ̂2 = ĥ/2n, where ĥ replaces parameters by their MLEs in (3.3).
We obtain α̂ by solving the system of equations: d̂0k =

∑p
j=1(d̂jk + 2jγ̂j−k)α̂j , for

k = 1, . . . , p. Further, d̂ij =
∑n−i−j

t=1 η̂R,t+iη̂R,t+j + η̂I,t+iη̂I,t+j , 0 ≤ i, j ≤ p and γ̂k =

d̂0k/2n is the lag-k sample autocovariance, k = 0, . . . , p− 1. Also, η̂Rt = yRt−x′tβ̂ cos θ̂
and η̂It = yIt − x′tβ̂ sin θ̂, t = 1, . . . , n. The ML estimation procedure thus consists of
iteratively updating (θ̂, β̂), α̂, and R̂

−1
n successively, proceeding until convergence.

Activation tests can be framed in the same way as before, i.e. by positingH0 : Cβ = 0
against Ha : Cβ 6= 0. The LRT statistic for the complex-valued AR(p) model is given by

− 2 log λC = 2n log

(
σ̃2

σ̂2

)
− 2 log

(∣∣∣R̂−1p ∣∣∣ / ∣∣∣R̃−1p ∣∣∣) , (3.5)

where α̃ and σ̃2 are restricted MLEs obtained under H0. Under H0, the LRT statistic is
again asymptotically χ2

m. Note also that the matrices R̂
−1
p and R̃

−1
p are functions of α̂ and

α̃, respectively, as in Pourahmadi (2001). Further, both (3.1) and (3.5) are modifications
of the LRT statistics given in Rowe and Logan (2004) for AR(p) rather than independent
errors.

3.2 Choosing the order of the autoregressive model

The order of the AR(p) models, whether for the magnitude-only or the complex-valued
case, is not a priori known and needs to be determined. We propose sequentially testing
H0 : αk = 0 vs. Ha : αk 6= 0, starting with k = 1, for increasing k. Let k′ be the first k in
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the sequence of tests for which the null hypothesis can not be rejected. Then the estimated
AR(p) order is given by p̂ = k′ − 1. We propose two alternative test statistics for carrying
out each test: the (sample) partial autocorrelation function (PACF) and, separately, another
LRT statistic for order detection. Both of our test statistics are extensions to the complex-
model case of the usual magnitude-only version. In the latter case, the PACF is calculated
from the magnitude-only residuals ε̂ assuming independence. Shumway and Stoffer (2006)
show that for an AR(p) process of n observations, the lag-k sample PACF âkk has an
asymptotic N(0, 1/n) distribution, for k > p. The null distribution of the magnitude-only
PACF statistic â(M)

kk is then approximately N(0, 1/n). Extension to the complex-valued
fMRI time series case essentially involves combining the contributions from the real and
imaginary residuals, resulting in our proposed PACF test statistic â(C)

kk = â
(R)
kk + â

(I)
kk , the

sum of the lag-k PACFs computed from the real and imaginary parts of the residuals. These
residuals are computed as η̂R = yR −Xβ̂ cos θ̂ and η̂I = yI −Xβ̂ sin θ̂, respectively,
where β̂ and θ̂ are as in Section 3.1, with R̂

−1
n = In. Because it can be shown that these

residuals are independent, the PACF statistic has a N(0, 2/n) distribution under H0.
The alternative LRT-based test statistic is given by the usual 2(ˆ̀k − ˆ̀

k−1) where ˆ̀
k

is the optimized log-likelihood for the (magnitude-only or complex-valued) AR(k) model:
from standard results, this test statistic is asymptotically χ2

1-distributed under H0.
The decision on whether to continue testing in the sequential procedure outlined above

can be based on either standard per-comparison error rate (PCER) methodology or false
discovery rate (FDR) thresholding (Benjamini and Hochberg, 1995). The latter accounts
for multiple significance assessments in order detection. For PCER thresholding, we base
these single-test decisions by specifying the probability of Type I error, which is rejecting
H0 : αk = 0 when k > p. This probability, say δ, has the property that δ = Pr(p̂ > p|p̂ ≥
p), the probability that the detected order is overspecified, given that it is not underspec-
ified. We now describe simultaneous detection of the order in M voxel time series using
FDR thresholding. Form = 1, . . . ,M , denote αmk be the kth order AR coefficient. For in-
creasing k, starting at k = 1, we simultaneously testH0 : αm(k)k = 0 vs. Ha : αm(k)k 6= 0,
for m(k) = 1, . . . ,Mk. For each of the Mk voxel time series, p-values (i.e., the measure
of evidence against H0 – not AR order) are computed from one of the discussed test statis-
tics and decisions are based on the “Bonferroni-type” FDR controlling procedure given in
Benjamini and Hochberg (1995). For k = 1, all M voxel time series are tested; that is,
M1 =M . Let k′m be the first k for which the time series at themth voxel fails to rejectH0.
Then the detected order for this voxel time series is p̂m = k′m − 1. For increasing k, the
number of tested voxel time series Mk decreases as voxels with k′m < k (whose AR order
has already been determined) are excluded from tests. That is, Mk+1 = Mk − Gk, where
Gk is the number of voxels with “fail to reject H0” decisions for order k. Simultaneous
tests continue for increasing k until Mk = 0. The FDR level q∗ is the rate at which the null
hypothesis is rejected in error: thus, in the context of simultaneous order detection, it is the
rate at which the order is detected in error (actually overspecified).

3.3 Detecting voxels significantly activated by the stimulus

Having detected the order of the fitted autoregressive models, our task now is to detect
activation, which is really the primary goal of our experiment. As mentioned previously, a
general test for activation for a single voxel time series is H0 : Cβ = 0 vs. Ha : Cβ 6= 0.
Each voxel is identified as activated if H0 is rejected, whether for the magnitude-only or
complex-valued AR(p) model: in either case, given the order p, the tests are asymptotically
χ2
m-distributed under H0. Once again, activation decisions can be based on PCER or FDR

thresholding, with the latter accounting for the multiple testing issues introduced when
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multiple voxels are considered.

4. Experimental Evaluations

We applied the methodology in Section 3, computing LRT activation statistics for simulated
fMRI data under both magnitude-only and complex-valued models with AR(p) errors. We
simulated complex-valued voxel time series in a manner so as to mimic the experiment of
Section 2, obtaining magnitude time series versions of them in the same way as is done
in fMRI. Our simulation setup used the model (3.2) with our X-matrix matching that of
the experiment in Section 2. Specifically, our design matrix X contained q = 3 columns:
the first column denoted the intercept term, the second modeled linear drift in the signal,
while the third modeled the expected BOLD response with a ±1 square wave. (Note that
consequently, with β = (β0, β1, β2)

′, activation tests were equivalent to testing H0 : β2 =
0 against Ha : β2 6= 0: also, the LRT activation statistics are χ2

1-distributed under H0.)
The square wave was lagged five time points (i.e. 5 seconds) from the stimulus time course
to model the lag induced by the BOLD response, as discussed in Section 1; compared
with other lags, the lag of five produced the highest activation statistics in the experimental
dataset. Due to concerns about the constant phase assumption, we removed the first 12 and
the last four time points, leaving us with voxel time series of length n = 256. This X-
matrix was used in simulating datasets and evaluating the performance of our methodology
in this section as well as in the analysis of our dataset in Section 5.

We compared the performance of LRT activation statistics under magnitude-only and
complex-valued AR(p) models in terms of maximizing and minimizing true and false detec-
tion rates, respectively. We emphasize two contexts of this comparison: first, we examine
the case with low SNR, building upon simulation experiments that, under the assumption
of temporally independent (or prewhitened) voxel time series, have shown superior de-
tection rate of complex-valued model activation statistics over their Gaussian-distributed
magnitude-only counterparts (Nan and Nowak, 1999; Rowe and Logan, 2004). We extend
this comparison to AR(p) time series. Second, we focus on how the activation detection
performance of both LRT statistics is affected by errors in order detection. As discussed
in Section 1, the effect of modeling temporal dependence on activation detection has a
long history for magnitude-only fMRI time series (Lazar, 2008) which we also examine for
complex-valued data.

In each of the experiments described above, we simulated fMRI datasets and computed
activation detection rates in two ways. First, we generated voxel time series from the same
parameters repeatedly and used standard (PCER) thresholding to determine activation. We
call this the “single voxel” simulation context. However, real fMRI datasets contain numer-
ous voxel time series and activation detection must account for multiple testing. Thus, we
also generated brain slices of 128× 128 voxel time series and, in this “brain slice” context,
used FDR thresholding to determine activation. These simulated brain slices were designed
to represent the finger-tapping dataset of Section 2 and contained three groups of voxels:
background (outside the brain) and inactivated and activated brain voxels. Each slice con-
tained 275 activated voxels, a number estimated from the dataset. Further, we chose our
parameter values to be the same for voxels in each group but different from those in other
groups.

The parameter values used in each simulation context are given in Table 1, which are
obtained from their estimates in the finger-tapping dataset.In this section, values of β0 and
β2 are parameterized through the signal-to-noise ratio, SNR ≡ β0/σ, and the contrast-
to-noise ratio, CNR ≡ β2/σ, respectively. The SNR measures the size of baseline, non-
BOLD signal relative to the noise level, and the CNR measures the relative size of the

JSM2015 - Section on Statistics in Imaging

48



Simulation Thresholding Voxel Parameter values
context procedure group β0 β1 β2 σ α

Single voxel PCER —— σSNR -0.000026 σCNR 0.0329 α∗

Brain slice FDR
Back. 0.02 0 0 0.0194 0

Nonact. σSNR -0.000026 0 0.0329 α∗

Activ. σSNR -0.000026 σCNR 0.0329 α∗

Table 1: Summary of parameters used in the two contexts of simulation experiments. In
the above, α∗ = (0.17, 0.45,−0.11,−0.23) and the voxel group abbrevations “Back.”,
“Nonact.”, and “Activ.” represent background, nonactivated, and activated voxel groups,
respectively.

BOLD response. In Section 4.1, we simulate at SNR less than 10, but otherwise we use
SNR = 50, a typical estimate from the dataset. Since the low-level finger-tapping task has
a higher CNR than high-level tasks of interest, such as cognition, we simulate at CNRs less
than dataset estimates.

4.1 Complex-valued/magnitude-only activation detection at low SNR

As noted in Section 1, SNR is proportional to voxel volume, so fMRI studies with in-
creased spatial resolution will have lower SNR data. We simulate such fMRI datasets with
SNR = 1, 2, . . . , 10 and CNR = 0.05, 0.10, . . . , 0.50, generating 100,000 single voxel
time series and 100 brain slices at each (SNR, CNR) combination. Assuming correct order
detection, LRT activation statistics are computed under complex-valued and magnitude-
only models. Activation is detected at PCER and FDR thresholds of δ = 0.0005 and
q∗ = 0.05, respectively, and detection rate is computed as the proportion of the activated
simulated voxel time series (i.e. with positive CNR) detected as such. These activation
detection rates are plotted against SNR for CNR = 0.35 in Figure 1, which shows strik-
ing similarity to those for simulated temporally independent voxel time series (compare
with Rowe and Logan, 2004, Figure 12). The activation detection rate is constant in SNR
for the complex-valued model LRT statistic, but decreases at low SNR under the Gaussian-
distributed magnitude-only model. As discussed in Section 1, the latter is most likely owing
to the poor Gaussian approximation of the Rice-distributed magnitude observations at low
SNR. This distributional approximation appears more tenable for SNR ≥ 6 because the
magnitude-only model detection rate is constant over this range, though at a slightly lower
level than the complex-valued model. We ascribe this slight difference to the disposal of
the phase information under the magnitude-only model.

Figure 2 summarizes the relationship between detection rate and SNR for all the CNRs
by displaying these detection rates in (SNR, CNR)-space. Images are presented for complex-
valued and magnitude-only LRT statistics and for the differences in their detection rates.
The features in the detection rate by SNR relationship discussed in the previous paragraph
are again present, most prominently for moderate CNRs; the differences in activation de-
tection rates again vanish for low and high CNRs, as detection rates are then close to zero
and one, respectively, regardless of model and SNR. Note that the negative differences in
Figures 2(c) and (f) (which favor the magnitude-only model), though visually compelling,
represent very small differences: the largest is less than 0.1%.
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Figure 1: Plots of activation detection rates of complex-valued and Gaussian-distributed
magnitude model LRT statistics against SNR for (a) the single voxel simulation context,
using a δ = 0.0005 PCER level, and (b) the brain slice context using an FDR level q∗ =
0.05. The CNR is 0.35.

4.2 AR order detection errors and their consequences on activation detection

Before investigating the effects of AR order detection errors on the performance of the
LRT activation statistics, we examine the rates of such errors under complex-valued and
magnitude-only models. Using the parameters in Table 1 and a true AR order of p = 4,
we simulate 100,000 single voxel time series and 100 brain slices with zero CNR and
SNR = 50. We apply the order detection methods introduced in Section 3.2 using PCER
and FDR levels δ = q∗ = 0.05. The proportions of voxel time series detecting each
order are shown in Table 2, which only includes in-brain voxels for the simulated brain
slices. Magnitude-only model order detection procedures have error rates more than dou-
ble those for complex-valued model procedures. This is not surprising, considering that
complex-valued model order detection methods use twice the amount of information than
the magnitude-only model detection. (Note also that most order detection errors constitute
underspecification.)

Table 2: The proportions of simulated voxel time series detecting each AR order p̂ under
the complex-valued and magnitude-only model order detection procedures introduced in
Section 3.2. The true order of 4 is shown in bold. Results are reported under both PCER
and FDR thresholding and the PACF and LRT order detection test statistics.

Complex-data Magnitude-data

PCER FDR PCER FDR

p̂ LRT PACF LRT PACF LRT PACF LRT PACF
0 0.016 0.017 0.048 0.049 0.149 0.151 0.306 0.313
1 0 0 0 0 0 0 0 0
2 0.069 0.071 0.066 0.068 0.221 0.221 0.181 0.182
3 0.001 0.000 0.001 0.001 0.024 0.025 0.020 0.021
4 0.865 0.866 0.886 0.882 0.575 0.572 0.493 0.484
5 0.046 0.043 0 0 0.030 0.029 0 0
≥ 6 0.002 0.002 0 0 0.002 0.002 0 0

Based on incorrect and correct detected orders p̂ = 0, 1, . . . , 8, we compute LRT ac-
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Figure 2: Images of activation detection rate in (SNR, CNR)-space for the (a),(d) complex-
valued and (b), (e) magnitude-only model LRT statistics and (c), (f) images of the difference
(“complex minus magnitude”) of these rates. Simulations are performed in (a)-(c) the single
voxel context with δ = 0.0005 and (d)-(f) the brain slice context with q∗ = 0.05.

tivation statistics for simulated AR(4) voxel time series with SNR = 50 and CNR = 0.2.
These activation statistics were thresholded at various PCER and FDR levels to obtain the
receiver operating characteric (ROC) curves in Figure 3, which plot true detection rate
against false detection rate. In ROC plots, better performing statistics will be closer to the
top and left, indicating higher true detection rates and lower false detection rates, respec-
tively. Under this criterion, the complex-valued and magnitude-only model statistics based
on the correct orders perform best while statistics based on underdetected orders show infe-
rior performance, while those for overdetected orders are indistinguishable from the correct
order curves (and therefore not shown); thus, it appears that underspecifying the order has
more severe consequences on activation detection than overspecifying it. Note also that
for each assigned order p̂, the complex-valued model activation statistic shows (slightly)
higher performance than its magnitude-only counterpart.

The results of our simulation experiments on AR order detection indicate that the per-
formance of the magnitude-only model in detecting activation is affected more by order
detection errors than the complex-valued model. In fact, order detection error rates were
higher for the magnitude-only model and were mostly confined to underspecification, the
direction shown to cause poorer activation detection.

The results of all our simulation experiments demonstrate three advantages of activa-
tion detection via the complex-valued model over the Gaussian-distributed magnitude-only
model: higher (true) detection rate at low SNR, smaller decrease in detection performance
due to order detection errors, and smaller false detection rate. The first, which is perhaps
most striking, is due to the untenable Gaussian approximation to the Rice-distributed mag-
nitudes at SNRs below 5. The SNR for finger-tapping dataset is well above this range, so
we will not see such an effect for it, but, as mentioned in Section 1, the SNR will decrease
for datasets incorporating more spatial resolution.
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Figure 3: ROC curves for LRT activation statistics based on assigned orders p̂ =
0, 1, 2, 3, 4 and complex-valued and magnitude-only models under (a) PCER and (b) FDR
thresholding.

(a) Complex-valued (b) Magnitude-only

Figure 4: Images of the detected AR orders under (a) complex-valued and (b) magnitude-
only data approaches for the finger-tapping dataset, using the LRT statistic with FDR
thresholding at a q∗ = 0.05 level.

5. Application to fMRI dataset

We detected activated voxels for the finger-tapping dataset under both the complex-valued
and magnitude-only models. We used the model matrix X described in Section 4 in this
application. Our computation of functional activation had three steps: order detection, com-
putation of LRT activation statistics, and thresholding. First, we detected the AR order for
each voxel time series, applying the magnitude-only and complex-valued model procedures
presented in Section 3.2. As shown in Figure 4, inside the brain, the complex-valued model
primarily detected an order of four while the magnitude-only model mostly detected zero or
two. Based on these detected orders, LRT activation statistics for the test ofH0 : β2 = 0 vs.
Ha : β2 6= 0 were calculated for both models. The voxel-wise p-values, computed from the
χ2
1 null distribution, were thresholded at a q∗ = 0.05 FDR level, determining whether each

voxel was detected. The resulting activation maps for complex-valued and magnitude-only
statistics are shown in Figures 5(b) and 5(c), respectively. On them, only detected activated
voxels are colored – with intensities according the size of the activation statistic – and are
overlayed on top of the greyscale anatomical image. Thus, our displayed activation maps
display both the location of voxels detected and their “degree” of activation, where larger
activation statistics demonstrate stronger activation.
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(a) Anatomical Image (b) Complex-valued model (c) Magnitude-only model

Figure 5: (a) Anatomical image of the subject’s brain displaying the central sulci (in green),
which contain the sensori-motor finger area cortices. Activation maps of the (b) complex-
valued and (c) magnitude-only model LRT statistics (overlayed on top of the same anatomi-
cal image), thresholded at the 5% false discovery rate. (Note that activation maps are drawn
after masking out voxels outside the brain, as determined by the anatomical image.)

We now discuss our findings and the relative advantages of using the complex-valued
model over magnitude-only analysis. As indicated earlier, the finger-tapping task has well-
established fMRI-detected activation regions in the central sulci, which are identified on the
anatomical image in Figure 5(a). We argue that the complex-valued model activation map
of Figure 5(b) is visually preferable to its magnitude-only counterpart displayed in Figure
5(c). Although both activation maps detect regions of voxels containing the central sulci,
the one obtained using the complex-valued model identifies the central sulci more clearly.
Also, voxels detected outside the central sulci in the complex map, better adhere to grey
matter (shown lighter in Figure 5(a)), which is intrinsically where neural activation takes
place. Our maps may also be compared to those in Figure 6 of Rowe and Logan (2004),
which are computed (for the same dataset) under the assumption of temporal independence.
Our maps, under both complex-valued and magnitude-only models, identify the central
sulci more clearly, which we attribute to modeling the AR(p) independence. Thus, we see
improved detection and localization abilities in using the time series information, which is
enhanced when we use the complex-valued observations over the magnitude-only datasets.

6. Discussion

In this paper, we have further developed the complex-valued time series analysis of fMRI
data for use in fMRI data analysis. As explained here, fMRI datasets are really complex-
valued when collected, but most analysis methods routinely discard the phase information,
utilizing only the magnitude images in the data analysis. In doing so, current practice
has been to assume a Gaussian distribution for the magnitude data, a supposition that is
not even approximately correct for low SNR values. This last point is important to note
because SNR (being proportional to voxel volume) decreases with increased spatial reso-
lution. In this paper therefore, we have proposed an AR(p) model for complex-valued time
series, thus extending the independent model of Rowe and Logan (2004). Under this model
framework, we derived an LRT statistic for detecting activated brain voxels. We compared
its performance to a statistic similarly derived under a Gaussian-assumed magnitude-only
linear model with AR(p) errors. For low-SNR simulated data, the complex-valued statistic
demonstrates notably higher activation detection rates than the Gaussian magnitude-only
statistic, due to the inaccuracy of the normal approximation to the Rice-distributed mag-
nitude data. This is potentially advantageous especially for the case of fMRI datasets col-
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lected at higher spatial resolutions and for datasets with higher-level cognitive tasks. In
either cases, SNR and CNR values are lower and thus, there is a greater payoff for using
the complex-valued approaches. Even for high-SNR simulated data, the complex-valued
approach yields lower AR order detection error rates (which negatively affect activation
detection) and lower false activation detection rates, simply due to the availability of twice
as many quantities in the complex-valued setting. For the finger-tapping dataset, the acti-
vation map for the complex-valued statistic more clearly identifies brain regions known to
be associated with finger movement – evidence which also indicates a lower false detection
rate.

There are several aspects of our work that require further attention. For one, we have
evaluated and demonstrated performance on a dataset with high SNR in order to establish
the validity of our methodology: it would be interesting to also evaluate performance on
a low-SNR experimental dataset. There is some scope for optimism here, given the re-
sults of our simulation experiments and the fact that our modeling is more accurate than a
Gaussian-approximated magnitude-only time series approach which is actually more sus-
pect at lower SNR. Secondly, while we hope that our methods and applications here will
spur the adoption of complex-valued methodology for fMRI datasets, we note that since
the practice to date has been to rely on magnitude-only fMRI datasets, there are a large
number of available datasets for which the phase information has been discarded. For such
datasets, temporal models that correctly model the time series in terms of the Rice distribu-
tion are needed. It is our view that complex-valued data analysis should become the norm
in fMRI: however, for the these datasets, methods on Rice-distributed regression time series
that accurately model the temporal correlation also need to be developed. Thus, we note
that while we have presented a compelling case for incorporating complex-valued analysis
in fMRI, there are many issues that could benefit further with increased attention.
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