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Misère Tic-Tac-Toe on Projective Binary
Steiner Triple Systems

David Clark Sophia Mancini Jacob Van Hook

Abstract. Imagine playing tic-tac-toe to lose. Two players, Xavier and Olivia, alternate mark-
ing squares as usual. As soon as one player owns three squares in a row, they lose. The com-
binatorial game “misère tic-tac-toe” generalizes this idea. The two players must first agree on
a board made from points and lines, which are subsets of the points—but this need not be a
traditional tic-tac-toe board. In this article, we study misère tic-tac-toe on projective binary
Steiner triple systems. We provide an explicit winning strategy for the second player, Olivia.
This winning strategy relies on the nested geometric structure of these systems, as well as the
structure of caps within them. This article completes the final case for misère tic-tac-toe on the
“geometric” Steiner triple systems, with the surprising result that the winning strategy belongs
to different players on affine versus projective Steiner triple systems.

1. INTRODUCTION. Find a friend and draw a tic-tac-toe board. Play as usual, ex-
cept that the first player to get three in a row loses. It can be surprisingly hard to wrap
your head around the new strategies you must use in this game! This “playing to lose”
variation of tic-tac-toe is called misère tic-tac-toe.

You don’t have to play this game on a standard tic-tac-toe board, however. Misère
tic-tac-toe, also known as “reverse tic-tac-toe” or “toe-tac-tic,” is a two-player combi-
natorial game. The players begin by choosing a finite board consisting of points and
lines (each of which is a subset of the points). They alternate taking points until one
“owns” all of the points on a line—and immediately loses. In traditional tic-tac-toe,
the points are the boxes where players can write “X” or “O” (hence taking that point),
and the lines are any of the three-in-a-rows that cause a player to lose. We represent
this board using points and lines in Figure 1.

X O X

O X

X O

Figure 1. A misère tic-tac-toe board represented as points and lines, with a loss for X.

A board made from an arbitrary set of points and lines (which are subsets of the
points) is called a hypergraph. Two-player games played on hypergraphs that have
no hidden information and no random elements, such as misère tic-tac-toe, are called
positional games. For a detailed survey of positional games, see [9]. “Normal” tic-
tac-toe on hypergraphs (in which the first player to complete a line is the winner)
has been especially well studied, and the winning player is known in many cases [1].
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However, these are often existence results: There are few explicit strategies known for
the winning player.

In normal tic-tac-toe on hypergraphs, either the first player has a winning strategy,
or both players can force a draw [9]. There is no such result when we reverse the goal:
In misère tic-tac-toe, either player could have a winning strategy depending on the
board chosen, or both may be able to force a draw.

Thus, it is our goal is to find explicit strategies that tell one player exactly how to
win misère tic-tac-toe. This has been done for a number of special classes of boards
that have some additional structure.

One type of board that you might have already thought of is a cube, with lines
running through rows, columns, and all diagonals. This generalizes to the “3d-cell,” in
which the first player has a known winning strategy for certain values of d, and can tie
for others [8].

Another misère tic-tac-toe board is inspired by the card game SET. This game is
played with a special 81-card deck, in which each card has four attributes, with three
values possible for each attribute. A “set” in the game consists of three cards for which
each attribute either has the same value on each card, or else all three cards have
different values. To play misère tic-tac-toe on SET, players alternate choosing any
card from the deck. They lose if they ever hold three cards that form a “set” in their
hand. Hence, the cards are points, and the “sets” are lines. The underlying geometric
structure that these form is called a ternary affine geometry [7]. In the smallest case,
playing misère tic-tac-toe with nine cards that have two of their attributes held constant
is equivalent to playing “torus tic-tac-toe” to lose. In [5], the authors give a simple
winning strategy for the first player on these boards.

The ternary affine geometries of SET are examples of a combinatorial object called
a Steiner triple system or STS. Steiner triple systems share many of the key geometric
features with traditional tic-tac-toe boards: They have three points per line, and each
pair of points appears on exactly one line. Thus STSs are natural boards for misère
tic-tac-toe.

In this article, we study misère tic-tac-toe on another type of STS, the projective
binary Steiner triple systems with 2n − 1 points, and give an explicit winning strategy
for the second player. This strategy relies on the nested geometric structure of these
systems. Together with affine ternary STSs, these STSs are known as the “geomet-
ric” STSs. Our results answer the question of winning strategies for misère tic-tac-toe
on the geometric STSs. To the best of our knowledge, explicit winning strategies for
misère tic-tac-toe on Steiner triple systems are unknown beyond these geometric STSs.

We begin by providing background information on Steiner triple systems in Section
2. In Section 3, we consider the smallest nontrivial Steiner triple system which forms a
basis for our subsequent work. We describe the winning strategy in Section 4. Finally,
in Section 5, we summarize our results and propose open problems related to our work.
Proofs of some technical results are contained in the Appendix (Section 6).

2. BACKGROUND. In this section, we define the key objects that we will study
in this article: Steiner triple systems, which generalize the key features of tic-tac-toe
boards. A Steiner triple system on n points, or STS(n), is a set of n objects P called
points together with a set L of subsets of P called lines, such that

1. Every line consists of 3 points, and
2. Every pair of points is contained in exactly one line.

There are a huge variety of STSs (see [2, Section 1] for additional information).
Indeed, there are 80 nonisomorphic STS(15)s. Thus, we focus on a particular type of
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STS. When n = 2k − 1 (k ≥ 3), we can construct a projective binary STS(n) or
PBSTS(n). The points are binary vectors of length k, excluding the zero vector. Lines
are subsets of 3 points whose binary sum is ~0. That is,

P = Fk
2 \ {~0} and

L = {{a, b, c} : a, b, c ∈ P and a+ b+ c ≡ ~0 (mod 2)}.

Below, we verify that this construction does indeed produce an STS.

Theorem 1. Every PBSTS(n) is a Steiner triple system.

Proof. We show that the two conditions in the definition of STS are met:

1. By definition, a line {a, b, c} of a PBSTS(n) could only fail to contain three
points if two points are equal, say a = b. In this case a + b + c ≡ 2a + c ≡
~0 (mod 2), which implies that c ≡ ~0 (mod 2). As ~0 is not a point, this is
impossible, and so each line consists of exactly three points.

2. Given two points a and b, the point a + b lies on a line with them. This can
be seen because a+ b+ (a+ b) ≡ 2a+ 2b ≡ ~0 (mod 2). If a+ b+ c ≡ ~0
(mod 2), then c ≡ −a− b ≡ a+ b (mod 2). Thus a and b are contained in
exactly one line.

Thus every PBSTS(n) satisfies the definition of Steiner triple system.

This article will only address PBSTSs, and so all addition will be done modulo 2.
Thus we will not write “mod 2” in subsequent calculations.

PBSTSs have been well studied. An alternative construction for them uses the points
and lines of binary projective geometries, which are a type of finite geometry. Most of
the terminology introduced in this section comes from this finite geometry context and
applies equally well to other finite geometries. See [2, 6] for further details.

Example. Here we construct a PBSTS(23 − 1). The points are binary vectors of length
3 except for the all-zeros vector, where we abbreviate the notation for the point (a, b, c)
as abc:

P = {001, 010, 011, 100, 101, 110, 111}.

Lines are subsets of three points whose vector sum is 000. For example, 001 + 101 +
100 = 000, and so {001, 101, 100} is a line. The complete list of lines is:

{001, 010, 011}, {010, 100, 110}, {011, 101, 110},
{001, 100, 101}, {010, 101, 111}, {011, 100, 111},
{001, 110, 111}.

We illustrate this PBSTS(7) by connecting the labeled points with lines, as in Figure
2. Note that line {010, 100, 110} is drawn as a circle here. The only relevant property
of a line is that the three points on it sum to 000—it need not be “straight”!

In misère tic-tac-toe, the game ends immediately once one player owns a line.
Hence, any winning strategy must involve sets of points that do not completely contain
a line. Luckily, this is a very well studied concept: A cap is a set of points in an STS
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111

Figure 2. PBSTS(7).

that does not contain any lines. A maximum cap is a cap having the largest possible
size for the given STS.

The size of a maximum cap is a hard limit on how long the game can continue:
Once one player owns all points in a maximum cap, that player must lose on their next
turn (unless, of course, the other player loses first). Conveniently, we know exactly
how large a cap can be in PBSTSs.

Proposition 2 (see [3]). The maximum size of a cap in a PBSTS(2k − 1) is 2k−1, and
such a cap exists.

Example. In the unique PBSTS(7), the points {100, 101, 110, 111} form a cap. No-
tice that no line in Figure 2 is entirely contained in these points. By Proposition 2 these
23−1 points must therefore be a maximum cap.

Maximum caps in PBSTSs are not rare, and in fact there is an easy construction.
Take the set of all points in a PBSTS(2k − 1) whose leftmost coordinate is a 1. The
sum of any three of these points will never be ~0, because their sum will have 1 + 1 +
1 = 1 in the leftmost coordinate. Thus no three such points can form a line. There are
2k−1 of these points, and so this cap is maximum. This is just one maximum cap—in
general, there are many distinct maximum caps within each PBSTS.

PBSTSs have a nested structure. A subsystem of a PBSTS(2k − 1) is a subset of
the points and lines that form a PBSTS(2j − 1) with j ≤ k. If the subsystem has size
2k−1 − 1 (the largest size smaller than the original PBSTS) it is called a hyperplane.

For convenience, we allow a line to be a hyperplane of a PBSTS(7). Subsystems
are essentially vector subspaces without the zero vector. Hence, if we have two points
in a subsystem, the unique third point that forms a line with them is also within the
subsystem, and so the whole line is within the subsystem.

We will often speak of the subsystem defined by a set of points. This is the small-
est subsystem that contains all of the points. For example, within a PBSTS(7), any two
points define a line, while any three noncollinear points define the full PBSTS(7).

There is a key relationship between hyperplanes and maximum caps that we will
use frequently in this article:

Proposition 3 (Segre [11]). For any maximum cap M of a PBSTS with point set P ,
P \M is a hyperplane of the PBSTS.

Example. Consider the PBSTS(15) S whose points are the 15 vectors P = F4
2 \

{0000}. Then S has 35 lines. Consider the subset P ′ of those points whose leftmost
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coordinate is 0, that is, points of the form 0abc. We have

P ′ = {0001, 0010, 0011, 0100, 0101, 0110, 0111}.

Because the leftmost coordinate of these points is 0, three points in P ′ form a line if
and only if their three rightmost coordinates sum to 0. This gives these seven lines:

{0001, 0010, 0011}, {0010, 0100, 0110}, {0011, 0101, 0110},
{0001, 0100, 0101}, {0010, 0101, 0111}, {0011, 0100, 0111},
{0001, 0110, 0111}.

These are exactly the same lines as the PBSTS(7), with an extra 0 added on the left of
each point. Thus the points inP ′ and these 7 lines form a subsystem S′ of size 7 within
the PBSTS(15). This subsystem S′ is a hyperplane of S, since S′ is a PBSTS(23 − 1)
within a PBSTS(24 − 1).

Further, to illustrate Proposition 3, consider the set of points

M = P \ P ′ = {1001, 1010, 1011, 1100, 1101, 1110, 1111, 1000}.

It can be verified that the 8 points in M are a cap of S, and by Proposition 2 they are
in fact a maximum cap. As we have seen, the points P \M = P ′ do indeed form a
PBSTS(7), which is a hyperplane of S.

The PBSTS(15) and substructures are illustrated in Figure 3. The points of P ′ ap-
pear on the left and are illustrated as a hyperplane isomorphic to PBSTS(7). The mid-
dle set of points are the same as those in P ′ with the leftmost coordinate set to 1, and
are shown in corresponding positions. We label these middle points with the notation
P ′ + 1000. One new point, 1000, has no analog in P ′ and appears on the far right.
The maximum cap M consists of all eight points on the right side. Note that many
lines have been left out of this figure; however, all such lines must have at least one
point in P ′. Three examples of such lines are shown (dashed).

P ′

0001 0010 0011

0101

01000110

0111

1001 1010 1011

1101

11001110

1111

1000

P ′ + 1000
M

Figure 3. PBSTS(15).

3. MISÈRE TIC-TAC-TOE AND THE FANO PLANE. The PBSTS(7) in Figure
2, known as the Fano plane, is the smallest nontrivial STS and is the unique STS of its
size. The Fano plane is the simplest place to play misère tic-tac-toe on an STS. In this

January 2014] MISÈRE TIC-TAC-TOE 5



Mathematical Assoc. of America American Mathematical Monthly 121:1 October 25, 2019 11:56 a.m. anti-ttt.tex page 6

section, we introduce the rules and notation used in misère tic-tac-toe. We study the
game on the PBSTS(7), which will form the basis for our subsequent general strategy.

To play misère tic-tac-toe on an STS, two players take turns selecting points until
one of them has chosen all three points in a line, losing immediately. We name the first
player Xavier, and the second player Olivia. A move is a single play by either player.
We denote Xavier’s and Olivia’s ith moves by Xi and Oi, respectively, with i ≥ 1. A
turn is a pair of moves beginning with Xavier: (Xi, Oi).

Example. We give an example of gameplay on the Fano plane, illustrated in Figure 4.

X1 O1

(a) Turn 1

X1 O1 X2

O2

(b) Turn 2

X1 O1 X2

O3X3

O2

(c) Turn 3

X1 O1 X2

X4

O3X3

O2

(d) Turn 4, Xavier’s move

Figure 4. Example of gameplay.

Turn 1: Xavier begins choosing X1 arbitrarily. Olivia follows up with O1, again
arbitrarily chosen, since every point forms a unique line with X1.

Turn 2: Xavier chooses his second move, X2, to complete the unique line formed by
X1 and O1. This guarantees that this line can never cause him to lose. Olivia realizes
that every choice of points is essentially the same for her: Each unclaimed point will
form a distinct line with each of the three claimed points, and each of those lines has
only one point already taken. So, O2 is again arbitrary.

Turn 3: Xavier chooses X3 so that he completes a line containing one of Olivia’s
points—a safe move. Olivia now has two choices, one of which would cause her to
lose. She lets O3 be the other point.

Turn 4: Xavier has no choice but to select the center point to be X4, which causes
him to lose with line {X2, X3, X4}.

The previous example illustrates a key result about misère tic-tac-toe on the Fano
plane that will form the basis for gameplay on larger PBSTSs.
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Theorem 4 (PBSTS(7) Strategy). The second player, Olivia, wins misère tic-tac-toe
on the PBSTS(7) by following this strategy:

1. Olivia’s first two moves are arbitrary.
2. Olivia’s third move is any point that is not O1 +O2.

Proof. Since Olivia plays second, she takes at most three points, and she can only lose
by forming a line with those three points. Olivia’s first two moves O1 and O2 define a
unique line {O1, O2, O1 +O2}, and so only the point O1 +O2 can cause her to lose.
Just before Olivia’s third move, there are two unclaimed points remaining, at most one
of which is O1 + O2. Thus Olivia can always select a nonlosing point. Xavier then
takes the seventh and final point in the game. It is known that for every partition of the
points of the PBSTS(7) into sets of three and four points, one set must contain a line
[4], and hence the game cannot end in a tie. Since Olivia can’t lose or tie, she wins.

Notice that in the above strategy, Xavier takes four points—the size of a maximum
cap in the PBSTS(7)—but these points are not a cap since they contain a line.

4. A WINNING STRATEGY ON ALL PROJECTIVE BINARY STEINER
TRIPLE SYSTEMS. In this section, we develop a winning strategy for all PB-
STSs. Not to give too much away, but Olivia—the second player—wins. This is a
bit surprising, since in [5] the authors found a winning strategy for Xavier—the first
player—on a different set of STSs. The STSs studied in [5] are known as affine ternary
STSs, and are structurally related to the card game SET. Together, PBSTSs and affine
ternary STSs are known as the “geometric” STSs, due to their connections with finite
geometry.

We start by establishing a simple condition that, if Olivia can meet it, guarantees
her win. Throughout, we assume that k ≥ 3.

Lemma 5. In misère tic-tac-toe played on the PBSTS(2k − 1), if Olivia can obtain 3
4

of the points in a maximum cap, then Xavier must lose on his next move.

Proof. By Proposition 2, a maximum cap M has 2k−1 points, so 3
4

of the points is

3

4
(2k−1) = 3 · 2k−3 = 2 · 2k−3 + 2k−3 = 2k−2 + 2k−3.

Because these points are in a cap, Olivia cannot form a line by taking them.
We now count the maximum number of points that Xavier may take. Within M ,

Xavier could take at most the 2k−3 points not taken by Olivia. All of Xavier’s other
moves must come from outside M . By Proposition 3, the (2k − 1)− 2k−1 = 2k−1 −
1 points outside of M form a hyperplane H that is a PBSTS(2k−1 − 1).

By Proposition 2 a maximum cap in H contains 2k−2 points. If Xavier takes more
than this number of points within H , he will lose. Thus Xavier can take at most 2k−3

points from M and at most 2k−2 points not in M (in H), for a total of 2k−2 + 2k−3

points. This is the same number of points that Olivia is assumed to take.
Thus at the end of turn 2k−2 + 2k−3, both players have taken 2k−2 + 2k−3 points.

Because Xavier is the first player, he will play next. By the previous argument, he must
take a point that will complete a line and so will lose.

In the remainder of the article we will show how Olivia can obtain the condition in
Lemma 5. Many of our key results rely on Olivia identifying a maximum cap within a
PBSTS. To identify maximum caps, we must better understand the nested structure of
both subsystems and caps.
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Given a subsystem S of a PBSTS(2k − 1), a peak relative to S is the first point
taken by Xavier that falls outside S. If q ∈ S, then the lift of q is p + q. Note that
p+ q 6∈ S. A point, its lift, and the peak form a line.

Suppose M is a subset of the points of a subsystem S with peak p. We use the
convenient shorthand M + p to denote the set of all lifts of the points in M . That is,
M + p = {x+ p : x ∈M}. Using the vector structure of these PBSTSs, if a subsys-
tem S is a PBSTS(2j − 1) with point set M and p is a peak, then M ∪ (M + p) ∪ {p}
together with all appropriate lines form a PBSTS(2j+1 − 1). This shows how subsys-
tems can “grow” in a recursive way. Note that each subsystem has a unique peak, and
as Xavier chooses peaks, he creates larger and larger subsystems, until eventually no
further peaks are available.

A peak, lifts, and the related notation are illustrated in Figure 3: The subsystem S
with points P ′, which is isomorphic to the PBSTS(7), has peak 1000 on the far right.
The lift of each point in P ′ appears to its right in the area labeled P ′ + 1000. The
entire PBSTS(15) has point set P ′ ∪ (P ′ + 1000) ∪ {1000}.

Every PBSTS(n) has a replication number r = n−1
2

that represents the number of
lines containing each point. This value is independent of the structure of the STS.

Lemma 6. Every line that intersects a maximum cap M of a PBSTS(2k − 1) intersects
M in exactly two points.

Proof. Consider a point p ∈M . There are r = 2k−1 − 1 lines through p, and 2k−1 −
1 points other than p in M . Each point p 6= x ∈M defines a unique line with p. None
of these lines contains a third point in M , since M contains no complete lines. This
accounts for all 2k−1 − 1 lines through p. Thus every line through p intersects M in
exactly two points.

A maximum cap can be “grown” from a smaller cap in a recursive way that we
describe next. This will allow Olivia to determine a well-defined maximum cap of a
PBSTS as the game progresses.

Lemma 7. Let M be a maximum cap in a subsystem S of size 2j − 1 within a
PBSTS(2k − 1), where j < k. Suppose p is the peak relative to S. Then M ′ = M ∪
(M + p) is a maximum cap of the subsystem S′ defined by S and p.

Proof. By Proposition 2, M contains 2j−1 points. By definition M ⊆ S, while every
point of M + p is in S′ \ S, and thus M and M + p are disjoint. Therefore |M ′| =
2j−1 + 2j−1 = 2j , the correct size for a maximum cap of the PBSTS(2j+1 − 1) de-
fined by S and p.

It remains to show that M ′ does not contain any lines. Suppose to the contrary that
three points {x, y, z} of M ′ do form a line. We consider cases based on the number
of these points that are in M .

Case 3: We cannot have {x, y, z} ⊆M because M is a cap.
Case 2: Suppose x, y ∈M . Then we can write z = a+ p for some point a ∈M .

Thus 0 = x+ y + z = x+ y + (a+ p) = (x+ y + a) + p. Thus x+ y + a = p.
However, x+ y + a ∈ S by definition of a subsystem, and p 6∈ S, a contradiction.

Case 1: Suppose x ∈ M . Then we can write y = b + p and z = a + p for some
points a, b ∈M . Thus 0 = x+ y + z = x+ (b+ p) + (a+ p) = x+ b+ a. This
implies that {x, b, a} is a line in M , contradicting the fact that M is a cap.

Case 0: Here we can write x = c+ p, y = b+ p, and z = a+ p for some a, b, c ∈
M . Thus 0 = x + y + z = (c + p) + (b + p) + (a + p) = (a + b + c) + p. This
leads to the same contradiction as Case 2.

Therefore, M ′ is indeed a maximum cap of S′.
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Maximum caps can be partitioned into useful subsets called tiles. Given a maxi-
mum cap M , a point a ∈M , and points p, q /∈M , the tile containing a is Sp,q(a) =
{a, a+ p, a+ q, a+ p+ q}. We can visualize a tile as the box in Figure 5.

Lemma 8. Given a maximum cap M of a PBSTS(2k − 1) and two points p, q /∈M ,
M can be partitioned into 2k−3 disjoint tiles {Sp,q(a) : a ∈M}.

Proof. We will show that each point a of M is in exactly one tile Sp,q(a), and that
each Sp,q(a) ⊆M .

Each point a ∈M is in the tile Sp,q(a) = {a, a+ p, a+ q, a+ p+ q}. Because
p, q /∈ M , by Lemma 6 we have a+ p, a+ q ∈ M . Since a+ p ∈ M and q /∈ M ,
by the same lemma we have that a+ p+ q ∈M . Therefore, each Sp,q(a) ⊆M .

Now consider a ∈ Sp,q(a) and suppose also a ∈ Sp,q(b) for some b. Then we can
write a = b + x where x is either ~0, p, q, or p + q. Thus b = a + x, and so b ∈
Sp,q(a). A similar statement holds for all other elements of Sp,q(a) and Sp,q(b), and
therefore Sp,q(a) = Sp,q(b). This shows that each point of M can only be in one tile.

Therefore, we have a partition of M into disjoint tiles of 4 points each. By Propo-
sition 2, |M | = 2k−1, and so the number of tiles is 2k−1

4
= 2k−3.

We are now ready to show how tiles and caps together limit Xavier’s possible plays.

Lemma 9. Suppose Xavier and Olivia play misère tic-tac-toe on the PBSTS(2k − 1).
Let M be a maximum cap of this PBSTS and suppose Xavier holds points p, q 6∈M . If
Xavier chooses some point a ∈M , then the only other point that Xavier may choose
in Sp,q(a), without immediately losing, is a+ p+ q.

Proof. The four points in Sp,q(a) are a, a + p, a + q, a + p + q. Because Xavier
holds a as well as p, we have that a + p would form line {a, p, a + p}. A similar
statement holds for a+ q. This leaves only a+ p+ q.

Lemma 9 is illustrated in Figure 5. This configuration of points and lines is known
as the Pasch configuration, and is well studied. In particular, PBSTSs contain the
maximum possible number of Pasch configurations among all STSs [6].

a a+ q

a+ p a+ p+ q

p

q

Figure 5. The Pasch configuration with tile Sp,q(a).

Lemma 9 shows that Xavier can take at most two points in every tile of a maxi-
mum cap M . This suggests an important strategy for Olivia: Whenever Xavier takes
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one point a ∈ M , Olivia immediately takes a+ p+ q, which is Xavier’s only other
possible point within that tile. By doing this, Olivia limits Xavier to exactly one point
out of every four in the cap. If Olivia takes only points within this maximum cap, then
Olivia can obtain at least three out of every four points—that is, 3

4
of the points in M .

If she can do this, then by Lemma 5, Olivia will win.
Of course, this is a wonderful idea—if it can be done! There are many questions

that we will have to answer first, including: Can Olivia always take the desired point?
And, more fundamentally: How is this cap M even defined?

We begin to answer these questions, and hence prove that Olivia can win, with the
following lemmas. The proofs of Lemmas 10 through 12 are fairly technical and do
not add much to the exposition, so we have placed their proofs in the Appendix and
instead illustrate each result with figures.

Lemma 10. Suppose Xavier and Olivia play misère tic-tac-toe on a PBSTS(2k − 1).
Within the first two turns of the game, Olivia can ensure that all of these occur:

1. The players’ moves define a unique PBSTS(7), P .
2. O1 = X1 +X2.
3. O2 ∈ P .

Lemma 10 assures us that the game always starts in the same basic way, regardless
of Xavier’s choices. After two turns, without loss of generality, the players’ moves
define a PBSTS(7) illustrated in Figure 6 referred to as the base plane of the game.

X1 O1 X2

O2

Figure 6. The first two turns of the game.

Now, we study the next two turns of the game. Beyond these first four turns, Olivia
will be able to implement her more general strategy outlined above.

Lemma 11. Suppose Xavier and Olivia play misère tic-tac-toe on a PBSTS(2k − 1).
Within the first four turns of the game, Olivia can ensure that all of the following occur:

1. Xavier has taken a peak p1.
2. Olivia owns the points O1 + p1 and X1 +O2.
3. There exists a well-defined maximum cap M ′ of eight points within the system

defined by the base plane and p1. Furthermore, X1, p1 6∈M ′.
4. Xavier can own at most one point in the tile SX1,p1(X2). If X4 ∈ M ′, then

Xavier can own at most one point in the tile SX1,p1(X4).

After four turns, Lemma 11 guarantees us a certain structure, illustrated in Figure 7.
The Fano plane on the left is the base plane. The points on the right are the lifts of the
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corresponding points on the left. Note that there are many lines not drawn that connect
base and lift points. Xavier’s moves are labeled with X’s, as well as p1. Olivia’s moves
are labeled with O’s as well as O1 + p1 and X1 +O2. Points in the cap M ′ have thick
outlines. Note how each point in the base plane’s cap has a corresponding lifted point
that is also in M ′. Dashed thick strokes denote SX1,p1(X2). Note that Xavier cannot
take X2 + p1, the lift of X2, since it would form a line for him. Thus this point is
marked (O) as it is safe for Olivia to take in the future. One of Xavier’s moves is
not shown—it could be one of the points not taken, or even another peak not in this
diagram.

X1 O1 X2

X1 +O2

O2

p1

O1 + p1 (O)

Figure 7. The first four turns of the game.

One consequence of Lemma 11 is that Olivia can identify a maximum cap as of the
fourth turn of the game. Next, Lemma 12 shows that as the players continue to play,
Olivia can always identify a maximum cap within the subsystems that their moves
define. Furthermore, the partition into tiles that Lemma 8 guarantees is “stable” in the
sense that as each cap grows, the existing tiles remain unchanged.

Lemma 12. Suppose Xavier and Olivia play misère tic-tac-toe on the PBSTS(2k −
1). Let X1 be Xavier’s first move, and let p1 be the first peak that Xavier takes. At
every turn i in the game with i ≥ 4, Olivia can determine a maximum cap Mi of the
subsystem defined by all previous moves such that for all i, Mi−1 ⊆ Mi, X1 6∈ Mi,
and p1 6∈ Mi. Furthermore, let Ti−1 and Ti be the partitions into tiles of Mi−1 and
Mi, respectively, guaranteed by Lemma 8. Then Ti−1 ⊆ Ti.

We inch closer to a winning strategy by showing that Olivia’s “ 3
4

win condition”
from Lemma 5 can also force Xavier to take peaks at certain points during the game.

Lemma 13. Suppose Xavier and Olivia play misère tic-tac-toe on the PBSTS(2k − 1),
and let maximum caps Mi be defined as in Lemma 12. If, on turn i ≥ 4 Olivia obtains
3
4

of the points in Mi, then on turn i+ 1 either Xavier takes a peak, or Xavier loses.

Proof. Consider the subsystem defined by all moves up through Xi. This is a
PBSTS(2j − 1) for some j ≤ k. If this subsystem is not maximal—that is, if j < k—
then Xavier may take a move from outside the current subsystem, which will then be
a peak. If Xavier takes a move from within the subsystem, then by Lemma 5 he will
lose immediately.

Lemma 13 shows that Xavier must periodically “escape” from the subsystem con-
taining current points. This guarantees that the caps Mi keep expanding as described
in Lemma 7, giving Olivia more room to play safely.
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At long last, we are ready to show how Olivia can win the game, regardless of
Xavier’s moves.

Theorem 14. Olivia has a winning strategy for misère tic-tac-toe played on any pro-
jective binary STS.

Proof. Suppose Xavier and Olivia play misère tic-tac-toe on the PBSTS(2k − 1). We
will show that, regardless of Xavier’s choices, either Xavier makes a losing move, or
Olivia can obtain 3

4
of the points in a maximum cap M of the PBSTS(2k − 1), and

hence she will win by Lemma 5.
Lemmas 10 and 11 describe Olivia’s moves for the first 4 turns of the game. By

Lemma 12, for all turns i ≥ 4 Olivia has a well-defined maximum cap Mi of the
subsystem spanned by the players’ moves. Furthermore, X1 and p1 are not in Mi,
where p1 is the first peak taken by Xavier.

By Lemma 8, Mi can be partitioned into disjoint tiles relative to p1 and X1. In
addition to being outside Mi, X1 and p1 are both owned by Xavier.

Suppose that on turn i > 4 Xavier chooses a point Xi = a ∈Mi. Xavier has there-
fore chosen a point in SX1,p1(a). If it is available, Olivia selects Oi = a+X1 + p1.
If this point is not available, or if Xavier chooses Xi 6∈ Mi, then Olivia selects any
point in Mi that has not been taken.

We note that if a+X1 + p1 is not available for Olivia to choose, then Olivia must
have chosen it earlier in the game. If it had been selected by Xavier, by this strategy,
Olivia would have claimed (a+X1 + p1) +X1 + p1 = a immediately after Xavier
chose a+X1 + p1. Then a would not have been available for Xavier to choose on the
current turn. Thus, at the end of turn i, Olivia owns a+X1 + p1 and Oi ∈Mi.

Further, Olivia is always able to take a point on her turn. Because Olivia always
owns a+X1 + p1 within the tile where Xavier just played, by Lemma 9 Xavier can
own at most one point in each tile of Mi. Thus if there were no point available for
Olivia to take in Mi, it must be the case that as of turn i − 1, Olivia owned at least
three points in each tile of Mi−1, and so at the end of turn i− 1 Olivia satisfied the
hypotheses of Lemma 13. Thus Xavier’s move Xi either caused him to lose the game
immediately (in which case Olivia celebrates her win rather than making a move), or
else Xi was a peak. In the latter case, by Lemma 12 Mi = Mi−1 ∪ (Mi−1 +Xi), and
none of the points in Mi−1 +Xi have been taken. Thus Olivia can take any point in
Mi−1 +Xi.

In all cases, all of Olivia’s moves are in the cap Mi, and hence Olivia can’t lose.
By this strategy, on some turn j Olivia defines a maximum cap M = Mj of the
PBSTS(2k − 1). Olivia will own at least three points in every tile of M (including,
by Lemma 11, in each of SX1,p1(X2) and, if X4 ∈M , SX1,p1(X4) as well).

Therefore, if Xavier does not make an earlier losing move, Olivia will eventually
obtain at least 3

4
of the points in M , and by Lemma 5, Xavier will lose on his next

turn. Thus Olivia wins.

The final result of this strategy is shown schematically in Figure 8. Within the max-
imum cap M , Olivia is able to obtain three out of four points in every tile, thus guar-
anteeing her the win condition from Lemma 5. The details of the starting moves that
allow Olivia to do this, which are addressed in Lemmas 10 through 12, are not shown.

5. SUMMARY AND OPEN PROBLEMS. This article presents an explicit winning
strategy for the second player, Olivia, for misère tic-tac-toe played on all projective
binary Steiner triple systems. An explicit winning strategy for Xavier has been previ-
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Figure 8. The end result of playing Olivia’s winning strategy. Tiles are outlined in thick squares.

ously found on affine ternary Steiner triple systems [5]. Together, these articles deter-
mine winning strategies for misère tic-tac-toe on all geometric Steiner triple systems.

Steiner triple systems are a natural structure on which to play misère tic-tac-toe. The
fact that each line has three points echoes tic-tac-toe, as well as the fact that every pair
of lines intersects in at most one point. There are many Steiner triple systems beyond
the ones studied so far, and so we suggest studying misère tic-tac-toe on Steiner triple
systems that are not built from finite geometries.

In this article, the recursive structure of the PBSTSs played a key role. The famous
“doubling construction” creates new STSs from smaller ones in a similar recursive
process. We suspect that some key results from this article, such as the ability to iden-
tify and track a maximum cap through a sequence of nested subsystems, would work
in doubled STSs as well.

An interesting variant on misère tic-tac-toe, “notakto,” involves both players mark-
ing the board with X’s [10]. The first player to complete a line loses. This game can
easily be played on PBSTSs. However, the strategy presented in this article cannot
be easily extended to notakto on a PBSTS, since Olivia’s strategy depends heavily
on completing lines where Xavier owns at least one point. We believe that finding an
optimal notakto strategy on PBSTSs is a nontrivial task.

6. APPENDIX: PROOFS OF STRATEGY RESULTS. This appendix contains the
proofs of several lemmas stated above. Because these proofs are fairly technical, we
present them here for completeness and give only their statements in the main exposi-
tion.
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Proof of Lemma 10. In any PBSTS, a line and a point not on the line define a subsys-
tem which is a PBSTS(7). The first two moves X1 and O1 are arbitrary. Now, Xavier’s
second move X2 can be one of two types of points:

Case 1: X2 = X1 +O1. Thus all three points on one line of the PBSTS have been
claimed. Olivia can select any available point to be O2. The line and O2 define a
PBSTS(7) P . In addition, X2 = X1 +O1 implies that O1 = X1 +X2.

Case 2: X2 6= X1 +O1. Thus the first three moves do not form a line. This means
that Olivia can choose the unclaimed point O2 = X1 +X2. This completes a line in
the PBSTS of which O1 is not a point; hence O1 and the line define a plane P . We
may relabel O1 and O2 by swapping their labels, so O1 = X1 +X2.

In either case, O1 = X1 +X2 and O2 ∈ P .

Proof of Lemma 11. We assume that the game is in the state guaranteed by Lemma 10,
with base plane P . Thus we may begin considering the game at the start of turn three.

Our strategy will call for Olivia to take a point in P in one of turns three or four.
Thus Xavier will be able to take at most one point in P . If Xavier were to take two
points in P , then the plane would be full and Xavier would lose by Theorem 4. Thus,
Xavier takes at least one point outside of P .

When Xavier first takes a point outside P , this is necessarily a peak p1, proving
point 1.

Olivia responds by taking O1 + p1 which must be available. Regardless of Xavier’s
other move, Olivia selects X1 +O2, unless this is the point that Xavier took. However,
the system and all points are symmetric with respect to switching X1 and X2, so
without loss of generality, we assume that Olivia takes O′ = X1 + O2. This proves
point 2.

Let M = {O1, O2, O
′, O1 +O2 +O′}. It is easy to check that this is a maximum

cap of P . Notice that O1 +O2 +O′ = (X1 +X2) +O2 + (X1 +O2) = X2. Thus,
M does not contain X1. Now define

M ′ = M ∪ (M + p1) = {O1, O2, O
′, X2, O1 + p1, O2 + p1, O

′ + p1, X2 + p1}.

By Lemma 7, M ′ is a maximum cap of the system defined by P and p1 and hence
contains eight points. By construction, X1 6∈M ′ and p1 6∈M ′. This proves point 3.

Finally, we address point 4. By Lemma 6, as O1 ∈M ′ and X1 /∈M ′, we have that
X2 = O1 +X1 ∈M ′. Then

SX1,p1(X2) = {X2, X2 + p1, X2 +X1, X2 + p1 +X1}
= {X2, X2 + p1, O1, O1 + p1}.

Olivia owns O1 and O1 + p1 and Xavier cannot take X2 + p1 without forming a
line. Next assume that X4 ∈ M ′ and consider the tile SX1,p1(X4). Xavier owns X4

and so cannot take X4 +X1 or X4 + p1. It remains to be shown that Xavier cannot
own X4 + p1 +X1. Consider M ′ as defined in point 3. All four of the points of M ′ in
P have been taken before turn four, so if X4 ∈M ′, then X4 must have been a lift of
a point in M . Thus X4 + p1 is that base point, so X4 + p1 ∈ {O1, O2, O

′, X2}. This
implies that X4 + p1 +X1 ∈ {X2, O

′, O2, O1}. Each of O1, O2, and O′ were taken
by Olivia before X4, and so could not be taken by Xavier. If X4 + p1 +X1 = X2,
then algebra gives us X4 = X2 +X1 + p1 = O1 + p1. This is a contradiction, since
O1 + p1 is a point taken by Olivia (by point 2). Thus in no case can Xavier take
X4 + p1 +X1.
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Proof of Lemma 12. By Lemma 11, by turn 4 Olivia can determine a maximum cap
of eight points within a subsystem defined by the base plane and one peak. Recall that
X1 is not in this cap, and there are no peaks in it. This cap is M4.

After turn four is completed, Xavier and Olivia continue taking points. For each
move, Xavier either plays within the subsystem spanned by the current moves, or he
takes a point from outside of this subsystem.

On turn i, if Xavier plays within the current subsystem, then Olivia sets Mi =
Mi−1. That is, her cap remains the same.

If Xavier takes a point from outside the current subsystem, then his move is a
peak pi. In this case, Olivia sets Mi = Mi−1 ∪ (Mi−1 + pi). By Lemma 7, Mi is
a maximum cap of the subsystem defined by all previous moves together with pi. Fur-
thermore, Mi−1 + pi is disjoint from the base plane, and so cannot contain X1. By
construction, p1 is not added to this set either.

Finally, the partitions guaranteed by Lemma 8 depend only on the exterior points
X1 and p1. Thus each tile SX1,p1(a) ⊆ Mi−1 is also contained in Mi, so Ti−1 ⊆
Ti.

ACKNOWLEDGMENTS. This work was partially supported by National Science Foundation grant DMS-
1659113, which funds a Research Experiences for Undergraduates program at Grand Valley State University.

The authors are also grateful to the anonymous referees for their suggestions, which significantly improved
this article.

REFERENCES

1. Beck, J. (2008). Combinatorial Games: Tic-Tac-Toe Theory. Cambridge, UK: Cambridge Univ. Press.
2. Beth, T., Jungnickel, D., Lenz, H. (1999). Design Theory, Volume I, 2nd ed. Cambridge, UK: Cambridge

Univ. Press.
3. Bierbrauer, J., Edel, Y. (2010). Large caps in projective Galois spaces. In: Storme, L., De Beule, J., eds.

Current Research Topics in Galois Geometry. Hauppauge, NY: Nova Science, pp. 81–98.
4. Carrol, M. T., Dougherty, S. T. (2004). Tic-tac-toe on a finite plane. Math. Mag. 77(4): 260–274. doi.

org/10.2307/3219284

5. Clark, D., Fisk, G., Goren, N. (2016). A variation on the game SET. Involve. 9(2): 249–264. doi.org/
10.2140/involve.2016.9.249

6. Colbourn, C. J., Dinitz, J. H. (2007). Handbook of Combinatorial Designs, 2nd ed. Boca Raton, FL:
Chapman & Hall/CRC.

7. Davis, B. L., Maclagan, D. (2003). The card game SET. Math. Intelligencer. 25(3): 33–40. doi.org/10.
1007/BF02984846

8. Golomb, S. W., Hales, A. W. (2002). Hypercube tic-tac-toe. In: Nowakowski, R., ed. More Games of No
Chance. Mathematical Sciences Research Institute Publications, 42. Cambridge, UK: Cambridge Univ.
Press, pp. 167–182.

9. Hefetz, D., Krivelevich, M., Stojaković, M., Szabó, T. (2014). Positional Games. Oberwolfach Seminars,
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