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SUPPLEMENT TO “RICE-DISTRIBUTED AUTOREGRESSIVE TIME
SERIES MODELING OF MAGNITUDE FUNCTIONAL MRI DATA”

BY DANIEL W. ADRIAN‡ AND RANJAN MAITRA*,§ AND DANIEL B. ROWE†,¶

Grand Valley State University‡ and Iowa State University§ and Marquette
University¶

S-1. Supplement to Section 2 – Further description of the dataset. Figure
S-1 shows plots of the real, imaginary, magnitude, and phase time series at a single
voxel, at one of the voxels showing the most activation. It also displays the time
course of the “on-off” fingertapping and the expected BOLD response obtained
by convolving this 0/1 stimulus time course with the Glover (1999) hemodynamic
response function (HRF). Although this BOLD response is present in the data,
trends in the time series (also known as also scanner drift) are also present which
must be accounted for.

S-1.1. Detrending scanner drift. Detrending scanner drift is a common pre-
processing step in the statistical analysis of fMRI time series. Two sources of this
drift are noise from the MR scanner and aliasing of cardiorespiratory cycles (Tan-
abe et al., 2002), and the magnitude of these changes “often far exceeds” both the
white noise and the amplitude of the task-related single change (Genovese, 2000).
Our study of the dataset’s time series suggests diverse, nonlinear shapes of drift
profiles, not only for magnitude time series such as those reported in Genovese
(2000), but for the real, imaginary, and phase time series as well. Figure S-2 shows
the plot of such a time series and compares four methods for fitting the trend: the
CV running line (Adrian, Maitra and Rowe, 2018), a polynomial fit, a natural cu-
bic spline, and a smoothing spline. We determined that the smoothing spline was
the preferred choice, but to study the robustness of our choice, we used both the
CV running line and smoothing splines in practice.1 Figure S-2 shows a plot of
the magnitude and phase time series for a selected voxel and compares the fit from
four curve fitting methods. One is the “CV running line” method introduced in
Adrian, Maitra and Rowe (2018) that fits linear models to both the magnitude and
phase time series (simultaneously), using a moving window that only considers

*Research supported in part by the the National Science Foundation CAREER Grant # DMS-
0437555 and the National Institutes of Health (NIH) awards #R21EB016212 and #R21EB034184.

†Research supported in part by the National Institutes of Health (NIH) award #R21NS087450.
1Indeed, the results were very similar for both detrending approaches, so we only present those

based on smoothing splines.
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FIG S-1. Time series of (from top) the real, imaginary, magnitude, and phase observations for one of
the voxels showing the most activation. Lighter lines in each display represents the raw time series,
while the darker lines show the result after applying a simple, central moving average filter with 5
nearest neighbors. The bottom display is of the 0/1 block design of the stimulus superimposed with
the stimulus/HRF convolution, after zero-centering and unit scaling.

time points within 64 seconds of the fitted time. The other three are more estab-
lished curve-fitting methods: a polynomial of degree 8, a natural cubic spline with
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6 evenly spaced knots, and a smoothing spline with 8 effective degrees of freedom
(Hastie, Tibshirani and Friedman, 2009). These last three methods are all based
on fitting separate curves to the real and the imaginary time series. As shown in
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(a) Raw data and fitted curves shown
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(b) Only fitted curves shown

method CV running line Degree 8 Polynomial Natural cubic spline Smoothing spline

FIG S-2. Comparison of four curve fitting methods on a selected voxel’s time series for the purpose
of detrending to correct scanner drift: CV running line (Adrian, Maitra and Rowe, 2018), degree
8 polynomial, natural cubic spline with 6 evenly spaced knots, smoothing spline with 8 effective
degrees of freedom.

Figure S-2(a), the four methods all capture changes in the global nonlinear trend
well. However, a closer look in Figure S-2(b) shows some differences. For one, the
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CV running line does not produce a smooth curve, which may introduce additional
variance to the detrended time series. Overall, it appears that the smoothing spline
is the “Goldilocks’ choice” as it seems to do the best in terms of not taking the
largest or smallest fitted value across all time points for both time series.

For clarity, we describe the detrending process using notation. First, for the real
and imaginary data, yRt and yIt, at a single voxel and time t, we use one of the
four methods to obtain the fitted trend values ŷRt and ŷIt. The detrended values are
then calculated as y̌ξt = yξt − ŷξt + ¯̂yξ, for ξ = R, I , where ¯̂yξ is the mean of the
fitted values across the corresponding time series. (The same approach applied to
magnitude-only data produces the magnitude-only detrended data.)

S-1.2. Graphical summaries of SNR and CNR. Figure S-3 shows spatial and
frequency distributions of the signal-to-noise ratio (SNR) and the contrast-to-noise
ratio (CNR) of the dataset. The SNRs and CNRs above were calculated as β̂0/σ̂
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FIG S-3. Graphical summaries of SNR and CNR: (left) images of slice 2; (right) frequency distribu-
tions

and β̂1/σ̂, respectively, where the previous parameter estimates were calculated
from the magnitude voxel time series using ordinary least squares regression with
an intercept term and the expected BOLD response in Figure S-1.

S-2. Supplement to Section 3 – Further Methodological Development.

S-2.1. CV and MOG model methodology.

S-2.1.1. CV model. The log-likelihood function is given by

(S-1) log f(yR,yI ; τ ) = −n log σ2 − log |Rn| − h/(2σ2),

where

(S-2) h =

(
yR −Xβ cos θ
yI −Xβ sin θ

)′(
R−1

n 0
0 R−1

n

)(
yR −Xβ cos θ
yI −Xβ sin θ

)
.

The maximum likelihood estimate (MLE) of β is β̂ = β̂R cos θ̂ + β̂I sin θ̂, where
β̂R = (X ′R̂

−1

n X)−1X ′R̂
−1

n yR, β̂I = (X ′R̂
−1

n X)−1X ′R̂
−1

n yI , and R̂
−1

n is a
4



function of α̂, the MLE of α, according to the (2p + 1)-diagonal matrix given
in Pourahmadi (2001). Further, the MLEs of θ and σ2 are given by

(S-3) θ̂ =
1

2
arctan

[
2β̂

′
RX

′R̂
−1

n Xβ̂I

β̂
′
RX

′R̂
−1

n Xβ̂R − β̂
′
IX

′R̂
−1

n Xβ̂I

]

and σ̂2 = ĥ/(2n), where ĥ evaluates the parameters in (S-2) at their MLEs. We
obtain α̂ by solving the system of equations (Miller, 1995)

(S-4) d̂0k =

p∑
j=1

(d̂jk + 2jγ̂|j−k|)α̂j ,

for k = 1, . . . , p, with d̂ij =
∑n−i−j

t=1 η̂R,t+iη̂R,t+j + η̂I,t+iη̂I,t+j , 0 ≤ i, j ≤ p,
and γ̂k = d̂0k/(2n), wherein η̂Rt = yRt − x′

tβ̂ cos θ̂ and η̂It = yIt − x′
tβ̂ sin θ̂,

t = 1, . . . , n. In practice, ML estimation consists of alternately updating (θ̂, β̂) and
(α̂, R̂

−1

n ) in a Cochrane and Orcutt (1949)-type procedure until convergence. The
LRT statistic for the test of H0 : Cβ = 0 vs. Ha : Cβ ̸= 0 is given by

(S-5) ΛCV S,p = 2n log

(
σ̃2

σ̂2

)
− 2 log

(∣∣∣R̃−1
p

∣∣∣ / ∣∣∣R̂−1

p

∣∣∣) ,
where Rp is such that σ2Rp = Cov(ηR1, . . . , ηRp) = Cov(ηI1, . . . , ηIp), R−1

p

is a function of α as in Pourahmadi (2001), and the “hats” and “tildes” denote
quantities maximized with respect toHa andH0, respectively. It can be shown that
ΛCV S,p follows an asymptotic χ2

m null distribution, where m = rank(C).

S-2.1.2. MOG model. The log-likelihood function for the MOG model is given
by log f(r; τ ) = −n

2 log σ
2 − 1

2 log |Rn| − 1
2σ2 (r −Xβ)′R−1

n (r −Xβ), where
Rn is such that σ2Rn = Cov(ϵ). The MLEs of β and σ2 are given by β̂ =

(X ′R̂
−1

n X)−1X ′R̂
−1

n r and σ̂2 = (r −Xβ̂)′R̂
−1

n (r −Xβ̂)/n, respectively. We
obtain α̂ by solving the system of equations

∑p
j=1{d̂ij + (j/n)d̂0,|i−j|}α̂j = d̂0i,

i = 1, . . . , p, where d̂ij =
∑n−i−j

t=1 ϵ̂t+iϵ̂t+j , for 0 ≤ i, j ≤ p, and ϵ̂t = rt − x′
tβ̂,

t = 1, . . . , n. The estimation procedure begins with R̂n = In and then itera-
tively updates β̂, α̂, and R̂

−1

n until convergence. The LRT statistic for the test of
H0 : Cβ = 0 vs. Ha : Cβ ̸= 0 is given by

(S-6) ΛMOG,p = n log(σ̃2/σ̂2)− log
(∣∣∣R̃−1

p

∣∣∣ / ∣∣∣R̂−1

p

∣∣∣) ,
where Rp is such that σ2Rp = Cov(ϵ1, . . . , ϵp).
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S-2.2. Relationships between CV, MOR, and MOG model densities. We illus-
trate some relationships between the probability density functions (PDFs) of the
CV, MOR, and MOG models for the observations at a single voxel and time-point.
Before we get into the derivations, let us state these relationships:

1. Fact 1: The MOR model PDF is the marginal PDF for the magnitude in the
CV model PDF.

2. Fact 2: For large SNR, the MOR model PDF approaches the MOG model
PDF.

Derivation of Fact 1. Under the CV model (and suppressing subscripts for time),
the PDF is
(S-7)

f(yR, yI ;µ,γ0, θ) = (2πγ0)
−1 exp

[
−(yR − µ cos θ)2 + (yI − µ sin θ)2

2γ0

]
.

Transforming this PDF for the real/imaginary data to the magnitude/phase data
yields

(S-8) f(r, ϕ;µ, γ0, θ) =
r

2πγ0
exp

[
−(r2 + µ2)

2γ0

]
exp

[
µr

γ0
cos(ϕ− θ)

]
.

The MO Ricean PDF then arises from integrating out ϕ in (S-8). That is, because∫ π
−π exp[µrγ0 cos(ϕ− θ)]dϕ = 2πI0(µr/γ0), the Ricean PDF (Rice, 1944) is

(S-9) f(r;µ, γ0) =
r

γ0
exp

[
−(r2 + µ2)

2γ0

]
I0
(
µr

γ0

)
.

Derivation of Fact 2. It can be shown the Ricean PDF approaches the Gaussian
PDF at large SNRs – that is, for large values of µ/

√
γ0. We use the approximation

(Abramowitz and Stegun, 1965) that for large values of x,

(S-10) I0(x) = (2πx)−1/2ex{1 + 1/(8x) +O(x−2)}.

Thus, for large SNR, which also implies large values of µr/γ0, substituting (S-10)
into the Ricean PDF (S-9) yields the Gaussian PDF

(S-11) f(r;µ, γ0) = (2πγ0)
−1/2 exp[−(r − µ)2/(2γ0)]

times two additional terms, (r/µ)1/2 and [1+(1/8)(µr/γ0)
−1] that approach unity

for large SNRs. (The former approaches unity because |r − µ| is on the order
of

√
γ0 ≪ µt. ) Indeed, Figure S-4 shows that the Ricean and Gaussian PDFs

converge with increasing SNR.
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FIG S-4. As the SNR (here, µ) increases, the Ricean and Gaussian PDFs converge.

S-2.3. Supplement to Section 3.2.1 – Methodological details of the EM algo-
rithm corresponding to the AR(p) Ricean model.

S-2.3.1. Supplement to Section 3.2.1 – Univariate Expectations. To find the
univariate expectations Eϕt|rt;τ (k) [cos(ϕt − θ)], we show that the distribution of
ϕt conditional on rt is von Mises. From standard results, the conditional PDF
f(ϕt|rt; τ ) is the joint PDF f(ϕt, rt; τ ) in (S-8) divided by the marginal PDF
f(rt; τ ) in (S-9). Thus, the conditional PDF is

(S-12) f(ϕt|rt; τ ) =
[
2πI0

(
µtrt
γ0

)]−1

exp

[
µtrt
γ0

cos(ϕt − θ)

]
,

which is the von Mises PDF with location parameter θ and concentration pa-
rameter µtrt/γ0 (Mardia and Jupp, 2000). It then follows from properties of the
von Mises distribution that the univariate expectations Eϕt|rt;τ (k) [cos(ϕt − θ)] =

A(rtµ
(k)
t /γ

(k)
0 ), t = 1, . . . , n.

S-2.3.2. Supplement to Section 3.2.1 – Bivariate Expectations. Here, we show
that the bivariate expectations E[cos(ϕt−ϕt+j)|rt, rt+j , τ

(k)] can be reduced to the
univariate expectations in (5). Our strategy is to take the bivariate expectation as the
“iterated expectations” Eϕt|rt [Eϕt+j |ϕt,rt,rt+j

{cos(ϕt+j − ϕt)}]. First, expanding
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the cosine term yields

Eϕt|rt

{
cos(ϕt − θ)Eϕt+j |ϕt,rt,rt+j

[cos(ϕt+j − θ)]

+ sin(ϕt − θ)Eϕt+j |ϕt,rt,rt+j
[sin(ϕt+j − θ)]

}
.

(S-13)

We now derive the conditional PDF of ϕt+j given ϕt, rt, rt+j . Starting with the
distributions of (yRt, yR,t+j) and (yIt, yI,t+j), which are independent and bivariate
normal, and using its magnitude and phase transformations, it can be shown that

(S-14) f(ϕt+j |ϕt, rt, rt+j) ∝ exp[κ cos(ϕt+j − θ) + δ cos(ϕt+j − ϕt)],

where κ = rt+j(γ0µt+j − γjµt)/b and δ = γjrtrt+j/b, with b = γ20 − γ2j . It
can then be shown that ϕt+j |ϕt, rt, rt+j follows the von Mises distribution by
writing the bracketed portion of (S-14) as K cos(ϕt+j − Ψ) where K = [κ2 +
δ2 + 2κδ cos(ϕt − θ)]1/2 and Ψ is such that sin(Ψ − θ) = δ sin(ϕt − θ)/K and
cos(Ψ−θ) = [κ+δ cos(ϕt−θ)]/K. Thus, the conditional distribution of (ϕt+j−θ)
given ϕt, rt, rt+j is von Mises with location parameter Ψ−θ and concentration pa-
rameter K. It follows that Eϕt+j |ϕt,rt,rt+j

[cos(ϕt+j − θ)] = A(K) cos(Ψ− θ) and
Eϕt+j |ϕt,rt,rt+j

[sin(ϕt+j − θ)] = A(K) sin(Ψ− θ) (Mardia and Jupp, 2000). Sub-
stituting these expectations into (S-13) and using the earlier expressions for the
sine and cosine of (Ψ− θ), we obtain (5).

S-2.3.3. Supplement to Section 3.2.1 – Maximizing with respect to constraints.
To find β(k+1) = argmaxβQ(α(k+1),β, σ2(k); τ (k)) as part of the (conditional)
M-step, we must maximize with respect to the constraint Xβ(k+1) ≥ 0. In the
following, we illustrate this constrained maximization for the X matrix defined in
Section 2.2, which has two columns: the first is an intercept containing all ones
and the second is the expected BOLD response, which we denote by b. It can be
shown that Xβ ≥ 0 if and only if Aβ ≥ 0, where A contains only two rows of
X: the rows a′

1 = (1,min(b)) and a′
2 = (1,max(b)). To maximize with respect

to Aβ ≥ 0, we first calculate the unrestricted maximizer

(S-15) β̂ = (X ′R−1
n X)−1X ′R−1

n u(k).

If Aβ̂ ≥ 0, then β(k+1) = β̂. Otherwise, let J = {j : a′
jβ̂ < 0}. Calculate β̃j =

Ωjβ̂ for each j ∈ J , where Ωj = I2−[a′
j(X

′R−1
n X)−1aj ]

−1(X ′R−1
n X)−1aja

′
j .

Then β(k+1) is the β̃j which maximizes Q(α(k+1), β̃j , σ
2(k); τ (k)).

S-2.3.4. Supplement to Section 3.2.2 – Empirical Information Matrix. We il-
lustrate the calculation of s(rt; τ ), t = p+ 1, . . . , n, the contributions to the score

8



statistic from time t from which the empirical information matrix I e(τ ; r) is con-
structed as in (10). We denote the elements of s(rt; τ ) that come from taking the
partial derivatives in (9) with respect to σ2, α, and β by sσ2(t), sα(t), and sβ(t),
respectively. It can be shown that sσ2(t) = [α̃′Dtα̃ − 2σ2]/(2σ4), where Dt

is a matrix of order (p + 1) having (i, j)th entry dt(i, j) = rt−irt−jEt−i,t−j −
µt−iut−j − µt−jut−i + µt−iµt−j , 0 ≤ i, j ≤ p, with Ers = Eϕ|r;τ [cos(ϕr − ϕs)],
ut = rtA(rtµt/γ0), and µt = x′

tβ. Further, sα(t) = D′
t(0)α̃/σ

2, where Dt(0)

is the matrix Dt, but without the first row. Finally, sβ(t) = α̃′Dt,βα̃/(2σ
2),

where Dt,β is the partial derivative of Dt with respect to β, with (i, j)th entry
dt,β(i, j) = (ut−i − µt−i)xt−j + (ut−j − µt−j)xt−i.

S-2.3.5. Supplement to Section 3.2.2 – Computation time. The computation
time under the MOR model is much greater than the other models because the con-
vergence of the EM algorithm is slow, even with the acceleration provided by the
hybrid scheme including Newton-Raphson steps. Figure S-5 shows the computa-
tion times required for parameter estimation of 1000 simulated time series under

α = 0.4 α = (0.4, 0.32) α = (0.4, 0.3, 0.2)
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FIG S-5. Computation times (sec) for parameter estimation per 1000 simulated time series under
the three models. The EM algorithm used by the MOR model has much slower convergence than the
other estimation schemes.

the three models. We generated these time series under the CV model with X ma-
trix described in Section 2.2, σ2 = 1, β = (β0, 0)

′ for β0 from 0.5 to 5.0, and AR
coefficients of 0.4, (0.4, 0.32), and (0.4, 0.3, 0.2). In our calculation, we assumed
the correct AR order was known. Per thousand time series, the computation times
for MOR model range from 24 to 447 seconds, while the other models are most
always under one second. It is interesting to note that the MOR model computation
time decreases as the SNR increases, decreasing by a factor of 10 as β0 increases
from 0.5 to 5.0. Computation times also increase for all models as the AR order
increases.

S-2.4. Supplement to Section 3.3 – Further details regarding test statistics.
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S-2.4.1. Supplement to Section 3.3 – Comparing false positive rates. The fol-
lowing simulation experiment examines the basic utility of the Wald and likeli-
hood ratio test (LRT) statistics in terms of whether they follow their theoretical
null distributions. To mimic the finger-tapping experiment, we generated magni-
tude time series from the AR(1) Ricean model with the two-column X matrix de-
scribed in Section 2. Of the parameter β = (β0, β1) corresponding to X , only β1 is
activation-related; thus, the activation test is H0 : β1 = 0 vs. Ha : β1 ̸= 0, and we
set β1 = 0 to examine the null distributions of the test statistics, which theoretically
should be χ2

1. To examine an SNR range similar to that in the dataset (see Figure S-
3), we set σ = 1 and varied β0 from 0.5 to 5.0. We set α1 = 0.3, generated 10,000
time series for each β0 value, and calculated the Wald and LRT statistics. Figure
S-6 shows the proportions of test statistics in which H0 was rejected (in effect,

sig. level =  0.01 sig. level =  0.05 sig. level =  0.1

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0.00
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0.06
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e 
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si
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e 
ra

te

Test
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FIG S-6. The false positive rates of the Wald test statistics fall sharply below the significance levels
(shown by the thick grey lines) for β0/σ values below 2, showing that LRT statistic is more reliable
for low SNRs.

the false positive rates) based on the theoretical χ2
1 null distribution at significance

levels of 0.01, 0.05, and 0.10. If the test statistic truly followed the theoretical null
distribution, each false positive rate should be close to the significance level (with
small discrepancies explained by simulation variability). However, it is evident that
the Wald test is unusable at β0 values below 2 due to its false positive rates falling
sharply below the significance level. Overall, the LRT statistic seems more reliable
due to its false positive rates better conforming with the significance level.

S-2.4.2. Supplement to Section 3.3 – Ricean AR(1) LRT statistic. Here, we
derive the expression for f(rt|rt−1; τ ) in (12). For notational simplicity, we focus
on f(r2|r1). Starting with yR2|yR1 ∼ N(µ2 cos θ + α(yR1 − µ1 cos θ), σ

2) and
yR1 ∼ N(µ1 cos θ, σ

2/(1− α2)), and similarly for the imaginary component, and
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transforming to magnitude and phase, it can be shown that
(S-16)
f(r1, ϕ1, r2, ϕ2) ∝ exp[C1 cos(ϕ1 − θ) + C2 cos(ϕ2 − θ) + C12 cos(ϕ1 − ϕ2)],

where C1 = r1(µ1 − αµ2)/σ
2, C2 = r2(µ2 − αµ1)/σ

2, and C12 = αr1r2/σ
2.

First, we integrate with respect to ϕ2. WritingC2 cos(ϕ2−θ)+C12 cos(ϕ1−ϕ2) =
K cos(ϕ2 − ψ), where K = [C2

2 + C2
12 + 2C2C12 cos(ϕ1 − θ)]1/2, and using∫ 2π

0 exp[K cos(ϕ2−ψ)]dϕ2 = 2πI0(K), we apply the Neumann Addition Formula
(Watson, 1948) to write

(S-17) I0(K) =
∞∑

m=0

ωmIm(C2)Im(C12) cos[m(ϕ1 − θ)],

where ωm = 1 for m = 0 and ωm = 2 for m ≥ 1. Also, using the result∫ 2π
0 cos[m(ϕ1 − θ)] exp[C1 cos(ϕ1 − θ)] = Im(C1), for m ≥ 0 (Mardia and Jupp,

2000), we obtain f(r1, r2). Dividing the result by (S-9), we obtain

(S-18) f(r2|r1) =
r2
σ2
eC0

[
I0
(
r1µ1
γ0

)]−1 ∞∑
m=0

ωmIm(C1)Im(C2)Im(C12),

where C0 = −[r22 + µ22 + α2(r21 + µ21)− 2αµ1µ2]/(2σ
2).

S-2.4.3. Supplement to Section 3.3 – Calculating the AR(1) log-likelihood func-
tion at high SNRs is computationally prohibitive. The following simulation study
demonstrates that calculation of the Ricean AR(1) log-likelihood function (12) be-
comes increasingly computationally prohibitive as the SNR increases. To vary the
SNR over the range of values seen in the dataset over different amounts of spatial
smoothing, we generated magnitude time series from the Ricean AR(1) model with
the X matrix described in Section 2.2, and β0 varied over {2j : j ∈ Z, 0 ≤ j ≤ 7}.
Other parameter values of σ2 = 1, α = 0.3, and β1 = 0 were held constant.

After the parameter estimates for each simulated time series were calculated us-
ing the hybrid EM/NR algorithm, we timed the calculation of the Wald and LRT
statistics. Timing results are from a Intel Core i5-6300M CPU 64-bit processor run-
ning Cwithin R (R Core Team, 2020). Figure S-7(a) shows that the calculation time
of the LRT statistic is uniformly higher than the Wald test statistic and increases
with the SNR. The computational time starts to become prohibitive from SNRs at
around 30, when it is aproximately 1 second per time series, and increases further
from there. As suggested by Figure S-7(b), this increase in computation time is
due to the increase in terms of the sum

∑∞
m=0 ωmIm(C1)Im(C2)Im(C12) in (12)

necessary for convergence (defined as a change of less than 10−10). As a result, we
will restrict our use of the LRT statistic to SNRs below 10 and use the Wald test
statistic otherwise (where the false positive rate problem illustrated in Figure S-6
does not appear to be an issue).
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FIG S-7. (a) The calculation time for the LRT statistic is greater than the Wald test statis-
tic, becoming prohibitive for high SNRs. (b) The average number of terms of the sum∑∞

m=0 ωmIm(C1)Im(C2)Im(C12) needed for convergence increases with SNR as well. (Note: Both
plots use log scales.)

S-2.5. Supplement to Section 3.4 – Choosing the order of the AR model. We
performed a simulation study to compare the AR orders detected under the sequen-
tial testing method proposed in Section 3.4 with those detected under the AIC and
BIC (Akaike, 1973; Schwarz, 1978) – i.e., more common model selection criteria.
We generated 10,000 time series under the CV model with X matrix described in
Section 2.2, β = (5, 0)′, σ2 = 1, and four sets of different AR coefficients: (1)
α = 0 for temporal independence, (2) α = 0.1 and (3) α = 0.2 for AR(1) de-
pendence, and (4) α = (0.1, 0.1)′ for AR(2) dependence. The proportions of time
series detecting each AR order p̂ based on the AIC, BIC, and sequential testing
method using a significance level of δ = 0.01 under the three models are shown in
Figure S-8.2

Two main results are worthy of special attention: first, the sequential testing
method in general detects a similar distribution of orders as the AIC and BIC. The
BIC is more similar to the sequential method, which can be explained by the fact
that the BIC penalty for each additional parameter of log n = 6.43 in this case is
closer to the sequential testing threshold of χ2

1,0.99 = 6.63 than the AIC penalty of
2. The second result is that the MO data-based order detection methods are more
likely to have a negative bias, and under-detect orders (in this case, especially for
α = 0.1 and α = (0.1, 0.1)′) than the CV model-based method. This difference
can be attributed to the fact that CV model has twice the amount of data, which
gives it more power in the sequential testing method.

S-3. Supplement to Section 4 – Further Simulation-based analyses.

S-3.1. Supplement to Section 4.1 – Properties of parameter estimates. Figure
S-9 expands on the results in Figure 2, summarizing the biases, standard errors, and

2Note that MOR model results are not shown for the AIC and BIC because the MOR model
log-likelihood is not tractable for general p.
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FIG S-8. Proportion of simulated time series in which each AR order (0-4) is detected for four
different sets of AR coefficients (columns), based on the AIC, BIC, and sequential testing methods
(rows) and the three models (colored bars). Note that MOR model results are not shown for the AIC
and BIC because the MOR model log-likelihood is not tractable for general p.

root mean squared errors of β̂0, β̂1, σ̂2, and α̂ under the three models for simulated
values of α = 0.2, 0.4, 0.6, and 0.8. (Figure 2 only shows α = 0.4.) Qualitative
comparisons of the parameter estimate properties across models (which models are
better/worse) are consistent across different values of α.

S-3.1.1. Supplement to Section 4.2 – Missing information matrix. The Fisher
information matrix is commonly used to estimate the standard errors of parame-
ter estimates (Casella and Berger, 2002) and in-so-doing, quantify the amount of
“information” given in the data about a parameter. In the framework of the EM
algorithm, separate information matrices can be derived based on the complete,
observed, and missing data (McLachlan and Krishnan, 2008). This extension al-
lows us to quantify the amount of “missing information” in the missing data about
a parameter (Orchard and Woodbury, 1972). In our context, recall that the magni-
tude, phase, and magnitude-phase constitute the observed, missing, and complete
data, respectively. Thus, by deriving the missing information matrix, we can quan-
tify the amount of “missing information” in the phase we miss out on when using
magnitude-only data.

For simplicity, consider a single complex-valued measurement, with magnitude
r and phase ϕ. We assume that the real and imaginary components yR and yI are
independent and normally distributed, with means µ cos θ and µ sin θ, respectively,
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and identical variances σ2. The log-likelihood function of the observed data r is
equal to that of the complete data (r, ϕ) minus the missing data ϕ; that is,

(S-19) logL(τ ; r) = logLc(τ ; r, ϕ)− log k(ϕ|r; τ ).

Differentiating with respect to τ twice and obtaining its expectation with respect
to ϕ, conditional on r, gives the following relationship between the information
matrices:

(S-20) I (τ ; r) = I c(τ ; r)− I m(τ ; r).

In words, the observed information is equal to the complete information minus the
missing information.

It can be shown that observed-, complete-, and missing-data log-likelihoods are

logL(τ ; r) = − log σ2 − r2 + µ2

2σ2
+ log I0

(µr
σ2

)
(S-21)

logLc(τ ; r, ϕ) = − log σ2 − r2 + µ2

2σ2
+
µr

σ2
cos(ϕ− θ)(S-22)

log k(ϕ|r; τ ) = − log I0

(µr
σ2

)
+
µr

σ2
cos(ϕ− θ),(S-23)

respectively. For simplicity, suppose it is known that σ2 = 1. Then, differentiating
twice with respect to µ shows that the complete- and missing-data information
matrices are I c(µ; r) = 1 and I m(µ; r) = ∂2

∂µ2 log I0(µr), respectively. It can be
shown that

(S-24) I m(µ; r) = r2 − rA(µr)/µ− r2A2(µr),

where A(·) = I1(·)/I0(·) as before.
After averaging over the Rice(µ, 1) distribution of R using Monte-Carlo inte-

gration, these information matrices are displayed in Figure 5. Note that the fraction
of the complete-data (total) information provided by the magnitude-only data in-
creases as the SNR increases.

Interestingly, the rate of convergence of the EM algorithm is a function of the
missing- and complete-data information matrices (Dempster, Laird and Rubin,
1977). Specifically, defining the rate of convergence as rc = limk→∞ ||τ (k+1) −
τ̂ ||/||τ (k) − τ̂ ||, it can be shown that rc is given by the largest eigenvalue of
I−1
c (τ̂ ; r,ϕ)Im(τ̂ ; r). This information ratio matrix measures the proportion of

information about τ that is missing by not also observing ϕ in addition to r
(McLachlan and Krishnan, 2008, Section 3.9.3). The greater the proportion of
missing information, the slower the rate of convergence. We then see a connec-
tion between the large proportion of missing information at low SNRs in Figure 5
and the higher computation times of the MOR model at low SNRs in Figure S-5.
As the SNR increases, the proportion of missing information decreases and so does
the computation time.
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S-4. Supplement to Section 5 – Further Analysis of low-SNR Dataset.

S-4.1. Supplementary figures. The following figures are presented in the order
to which they are referred in the main article. Figure S-10 shows the frequency
distributions of the voxel-wise detected AR orders under the three models. The
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FIG S-10. Frequency distributions of detected AR orders for the fingertapping dataset under the
three models.

orders were detected using the sequential testing procedure described in Section
3.4 with a significance level of 0.01. The orders were limited to a maximum of 4
due to large computational times using the MOR model; if a larger cap on orders
is desired in practice, we suggest using the MOG model as a surrogate, as it gives
very similar results without such computational issues.

Figure S-11 expands on the results of Figure 6, showing activation maps for
slices 1, 2, and 3 with inset maps showing the left central sulcus ROI. (Figure
6 only shows slice 2.) These additional slices are shown to demonstrate that the
maps shown of slice 2 in Figure 6 show more activation than the other slices, but
the patterns of activation are somewhat similar across all slices. In addition, Figure
S-12 provides a graphical representation of the p-values in Table 2.

Figure S-13 refers to our study of adding extra noise to the original unsmoothed
data to further lower the SNR and CNR of the dataset. The plots show the average
SNRs and CNRs for 10,000 simulation-based time series generated from each of
the 10 voxel time series identified in Figure 6. The results verify that adding extra
noise to the raw data does indeed lower the SNRs and CNRs and that the effect is
intensified as the noise standard deviation σa increases. Also, Figure S-14 shows
a graphical representation of the detection proportions in Table 3.
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