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Functional magnetic resonance imaging (fMRI) data generally consist of
time series image volumes of the magnitude of complex-valued observations
at each voxel. However, incorporating Gaussian-based time series models and
the Rice distribution—a more accurate model for the data—in the time series
have been separated by a distributional “mismatch.” We bridge this gap by in-
cluding pth-order autoregressive (AR) errors into the Gaussian model for the
latent real and imaginary components underlying the Rice-distributed mag-
nitude data. Parameter estimation is then done by augmenting the observed
magnitude data with the missing phase data in an expectation-maximization
(EM) algorithm framework and followed by AR order determination and
computation of test statistics for activation detection. Using simulated and ex-
perimental low-SNR fMRI data, we compare the performance of this Ricean
time series model with a Gaussian AR(p) model for the magnitude data and
also with a complex Gaussian time series model for the entire complex-valued
data. Our results show improved parameter estimation and activation detec-
tion under the Ricean AR(p) model for the magnitude data than its Gaussian
counterpart. The model using the complex-valued data (which is rarely col-
lected in practice) detects activation better than both magnitude-only models
but only because it has more data. Thus, while our results here provide for
the improved analysis of commonly-collected and archived magnitude-only
fMRI datasets, they also argue strongly against the currently routine practice
of discarding the phase of the complex-valued fMRI time series, advocating
instead for their inclusion in the analysis.

1. Introduction. Functional magnetic resonance imaging (fMRI) is a prominent non-
invasive modality for studying human brain function. It is built upon the principle of the
blood oxygen level dependent (BOLD) contrast (Ogawa et al. (1990), Belliveau et al. (1991),
Kwong et al. (1992), Bandettini et al. (1993)), where firing neurons lead to changes in
the blood oxygen levels of neighboring vessels, and the magnetic resonance (MR) signal
fluctuates due to the differing magnetic susceptibilities of oxygenated and deoxygenated
hemoglobin (Lazar (2008)). Scientists can gain insight on the functional structures of the
brain by analyzing time courses of MR signals acquired while a subject performs a designed
series of tasks.

The voxelwise MR signal at each time point is originally complex-valued, containing real
and imaginary (or equivalently, magnitude and phase) components. This complex-valued at-
tribute is a consequence of how the data are acquired: the originally measured, complex-
valued k-space data (Brown, Kincaid and Ugurbil (1982), Tweig (1983), Ljunggren (1983))
consist of the different frequency contributions to the signal from each voxel resulting from
magnetic field gradients (Jezzard and Clare (2001)). Then the application of the inverse
Fourier transform (Jain (1989)), a complex-valued operation on the k-space data, separates
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these frequencies and localizes each voxel’s measurements. However, despite the fact that the
original signal is complex-valued, statistical analysis of fMRI data is almost always necessar-
ily only on the magnitude data, because the concomitant phase measurements are discarded
and irretrievable once the (magnitude) data are extracted from the scanner (where it is over-
written by subsequent scans). We refer to such analyses as “magnitude-only” (MO) statistical
analyses and note that this approach likely arises as a consequence of the default output of
MR scanners that does not routinely include phase images, even though they can easily be
collected by simply changing a preset variable in an input file (Yu et al. (2018)). Conse-
quently, most fMRI data and analyses are MO and, at least figuratively, do not use half of the
originally available data.

One of the most common forms of MO analysis fits, at each voxel, a general linear model
(Friston et al. (1995)) for the (preprocessed) time series observations in terms of a waveform
representing the expected BOLD contrast. This waveform is the convolution of the stimu-
lus time course with the hemodynamic response function (HRF), which gives the BOLD
response to an instantaneous neuronal activation (Friston, Jezzard and Turner (1994), Glover
(1999)). These general linear models for magnitude fMRI time series also incorporate au-
toregressive (AR) (Bullmore et al. (1996), Marchini and Ripley (2000), den Dekker et al.
(2009)) or autoregressive moving average (ARMA) (Locascio et al. (1997)) errors, due to
several reasons. For one, the hemodynamic response to a single neural activation takes be-
tween 15 and 20 seconds (Lazar (2008)), which is much longer than the sampling intervals of
many fMRI techniques—for instance, of between 100 milliseconds and five seconds for echo-
planar imaging (EPI) techniques (Friston, Jezzard and Turner (1994)). Additional sources of
autocorrelation are also provided by the subject’s cardiac and respiratory cycles (Friston et al.
(2000)) and by the common preprocessing step of temporal smoothing. From these model
fits, the time series at each voxel is aggregated to a test statistic that measures the degree of
activation in the statistical parametric mapping (SPM) framework of Friston et al. (1990).
Thresholding methods are then applied to the SPM to identify activated voxels (Genovese,
Lazar and Nichols (2002), Logan and Rowe (2004), Worsley et al. (1996)).

The above MO approaches assume that the magnitude measurements follow a Gaussian
distribution, but a more correct model utilizes the Rice distribution (Gudbjartsson and Patz
(1995), Rice (1944)), as we show in the following. It is well known (Henkelman (1985), Ma-
covski (1996), Sijbers et al. (1998)) that the complex k-space data are Gaussian distributed,
and this distributional assumption is also preserved, by linearity, upon applying an inverse
Fourier transform. Specifically, it is commonly assumed (Wang and Lei (1994)) that the real
and imaginary measurements at a single point in space and time are independent normal ran-
dom variables with the same variance and phase-coupled means; it follows that the magnitude
has a Rice distribution. The Gaussian MO model is often justified by the fact that the Rice
distribution approaches the Gaussian distribution for large signal-to-noise ratios (SNRs).

However, fMRI scans that are more detailed, acquired faster or on portable systems (Liu
et al. (2021)) come at the loss of SNR. For magnitude fMRI time series, the SNR repre-
sents the ratio of the mean, that is, the nonactivation-related, baseline signal to the stan-
dard deviation (SD) of the noise time series.1,2 It is well known that SNR is proportional
to voxel volume and inversely proportional to image acquisition time (Lazar (2008)). Thus,
although scans with increased spatiotemporal resolution show promise in a clinical setting in

1There is also the contrast-to-noise ratio, or CNR, that is the ratio of the amplitude of the BOLD contrast to the
noise SD.

2It should be noted that we are speaking of temporal SNR—comparing measurements across time at a single
voxel—and not image SNR, which would compare measurements across voxels at a single time point; see Murphy,
Bodurka and Bandettini (2007).
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presurgical mapping and also in understanding human neuropsychology (Rosen and Savoy
(2012)), they also come at the cost of decreased SNR. SNR is also proportional to magnetic
field strength, so ultrahigh field (UHF) MRI (Balchandani and Naidich (2015)) makes high-
resolution fMRI more feasible, but UHF scanners presently lack wide availability (Cosottini
and Roccatagliata (2021)). There has also lately been the move to make MRI (and fMRI)
more accessible through the use of ultralow field magnets (Liu et al. (2021)), which while
providing more accessible, cost-effective and environmentally sustainable scanning equip-
ment, however, yield images of relatively poor quality, lower SNR and limited spatial resolu-
tion (Islam et al. (2023)).

Out of the above concern that the Gaussian assumption may not be adequate for such
low-SNR data, Zhu et al. (2009) developed Rice-distributed models that ignored temporal
dependence in the voxelwise time series, with Bayesian methodology for this problem also
developed in Wegmann, Eklund and Villani (2017). Also, Solo and Noh (2007) demonstrated
that Gaussian-model-based maximum likelihood (ML) estimates of parameters for simulated
Ricean data are biased for SNRs under 5, with the bias increasing as the SNR decreases. But
a Ricean model for the observations that also incorporates temporal dependence has never
previously been developed, and we address this lacuna in this paper.

1.1. Main contributions of this paper. We highlight the main contributions to the statis-
tics and scientific community that we make through this paper. First, we provide methodology
and analyze the use of autoregressive time series regression for data that are from the Rice
distribution. In doing so, we address the gaps in Zhu et al. (2009) or in Wegmann, Eklund
and Villani (2017) that ignored temporal structure while developing Rice-based regression
models for the fMRI time series. Adrian, Maitra and Rowe (2018) showed substantial gains
in using the complex-valued data over those using (Gaussian-distribution-assumed) MO-only
data; however, all archived or acquired datasets from fMRI studies are MO, and, therefore, it
is important to see if the analysis of such datasets can be improved by using more accurate
Rice-distributed AR time series models, especially in low-SNR situations.

Second, we provide a thorough and detailed comparison of the CV-based analysis (Adrian,
Maitra and Rowe (2018)) of fMRI data vis-a-vis that obtained using the methods developed
in this paper. We show that while our Rice-distributed modeling of MO datasets improves
parameter estimation and activation detection accuracy, over those done by Gaussian-based
MO analysis, with the improvement very pronounced at low SNRs, both analyses approaches
are outperformed by CV-based analysis. Therefore, we advocate to the fMRI and scientific
community for the storage (and analysis) of CV (both magnitude and phase) fMRI data, es-
pecially because, as mentioned earlier, its acquisition is a simple matter of modifying a preset
variable in an input file (Yu et al. (2018)). At the same time, it is important to reiterate, as
in the previous paragraph, that archived datasets or those gathered under current practice,
only have the magnitude values, with the phase having been discarded and, therefore, un-
retrievable, and so need the methods developed in this paper for their improved MO-based
analysis.

Third, as will be discussed in Section 2, we provide to the community not only a complex-
valued fMRI dataset of a finger-tapping experiment but also one that, with the innovative
use of a radio-frequency (RF) coil, provides us with a low-SNR dataset of a well-studied
experiment and allows for benchmarking of performance of our more accurate MO-based
methods in lower-SNR frameworks. Ultralow field MRI is increasingly gaining popularity,
however these systems are mostly unavailable publicly, and our framework fills this gap,
providing a CV dataset with both magnitude and phase measurements.

Fourth, but also significant, our immediate application in this paper is in the context of
analyzing fMRI time series, but similar problems also arise in the context of signal processing
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and communications (Abdi et al. (2001), Hajri, Youssef and Patzold (2009), Lindsey (1964),
Bar-Shalom, Li and Kirubarajan (2001), Arafa and Messier (2010)) where it may be desirable
to understand the characteristics and behavior of wireless, radar and sonar signals in relation
to other factors. Another context is in meteorology (Best, Rayner and Thas (2010), Baïle,
Muzy and Poggi (2011), Baggio and Muzy (2024)), where first the Rayleigh and then the
Rice and the M-Rice distributions have lately been used to better model the windspeed and
improving regression modeling of Rice-based time series data are important, for instance, for
predicting windspeed and wind energy energy output (Wang et al. (2019)).

1.2. Organization of this paper. The remainder of the paper is structured as follows.
Section 2 introduces a series of low-SNR images acquired from a finger-tapping experiment
that is our motivating application. These images have a lower SNR than typical fMRI data,
due to their being acquired with the body coil instead of the head coil, and their analysis
here is motivated by the divergence of the Rice and Gaussian distributions at low SNRs. Sec-
tion 3 illustrates the novel methodological development of the MO AR(p) Ricean model.
Section 4 performs simulation experiments to study the validity of the methodological results
and compares the results using different models under a known ground truth. We compare
three models: the AR(p) Ricean and Gaussian models for MO voxel time series as well as
a model that utilizes the entire complex-valued (CV) data. Our primary focus is on the two
models for MO data, as the entire CV data is rarely collected, but we also present compar-
isons between the CV vs. MO data-based models to advocate for collecting the complete
data. Section 5 presents the statistical analysis of the low-SNR dataset and its implications.
We conclude with a discussion of the results and the paper. Our paper also has an online sup-
plement (Adrian, Maitra and Rowe (2025)) containing additional details regarding method-
ology, the simulation experiments, and the dataset analysis. Sections, figures and equations
in the Supplementary Material are referenced here with the prefix “S-.”

2. A low-SNR fMRI finger-tapping experiment dataset.

2.1. Data acquisition. We develop our methods in the backdrop of a sequential finger-
tapping experiment, the type of which are applied to noninvasive neurosurgical preparation
(Lee et al. (1999)). Experiments that use finger tapping, sponge squeezing or brushing of
the palms as stimuli in block design are used to identify the location of hand function in
candidate patients for resective surgical treatment for tumors and epilepsy (Lee, Jack and
Riederer (1998)). While it is well known that the central sulcus in the sensorimotor cortex is
the location of hand function for normal healthy adults (Rumeau et al. (1994)), fMRI allows
the location of specific functional areas to be verified noninvasively in relation to the proposed
surgical target (Lee et al. (1999)).

In our application, MR images were acquired with TR = 1 s during a block design exper-
iment with an initial 16 s of rest followed by 19 epochs of 16 s of right-hand finger tapping
alternating with 16 s of rest. Following standard practice, the first three images are excluded
from our analysis, due to machine “warmup” effects, leaving us with a temporal sequence of
n = 621 images. Each volume image was composed of seven 2.5 mm thick 128 × 128 axial
slices with a 24.0 cm FOV. Due to the decussation of nerve fibers in the upper slices of the
brain, crossing from one lateral side to the other (Carpenter (1991)), the right-hand finger
tapping activates the left central sulcus (identified in Figure 1).

The data were acquired with the body coil (also known as the RF coil, as it produces
the radiofrequency pulse used to produce the “resonance” condition of MRI). In general,
the body coil has a large measurement field and thus has lower SNR than specialized coils
such as the head coil usually used in fMRI studies. Health care sites in developing countries
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FIG. 1. Anatomical image of the second slice identifying the left central sulcus.

may use body coil acquisition because specialized coils represent additional costs beyond
the MR scanner. Additionally, spinal (Powers, Ioachim and Stroman (2018)) and renal fMRI
(Zhang et al. (2013)) use body coil acquisition. Using body (rather than head) coil acquisition
provides us with a lower SNR dataset of a well-studied experiment to serve as a marker
for performance in low-SNR settings, which is where CV, MO Ricean and MO Gaussian
models have been shown to diverge previously. Further, as mentioned in Section 1.1, it is
extremely rare for such a dataset to be publicly available, so we make it available to the
scientific community at https://github.com/dadrian14/arp-rice-data.

2.2. Data processing pipeline. For this dataset the phase components of the time series
images were not discarded but stored along with the magnitude images used in traditional
fMRI analysis. The data processing flow included Nyquist ghost removal and correction
for global zero-order off-resonance using three navigator echos (Jesmanowicz, Wong and
Hyde (1993), Nencka, Hahn and Rowe (2008)), image reconstruction from k-space by in-
verse Fourier transform (Kumar, Welti and Ernst (1975), Rowe (2016)) and estimation and
correction of the dynamic field using temporal off-resonance alignment of single-echo time-
series (TOAST) (Hahn, Nencka and Rowe (2009, 2012)). A binary mask of voxels above
12% of the maximum voxel signal magnitude was generated from the first magnitude image
of the dataset (before discarding the first three images) to represent the voxels within the brain
subject to statistical activation detection. In addition, we used smoothing splines to detrend
the voxel time series, after comparing several methods (see Section S-1.1).

After preprocessing we applied the CV and MO models to each voxel time series. For
each model the design matrix X had n = 621 rows and q = 2 columns: one column was
an intercept modeling the baseline MR signal, and the other was a zero-centered waveform
modeling the expected BOLD response given by a convolution of the stimulus time course
with the Glover (1999) hemodynamic response function. The bottom panel of Figure S-1
shows a superposition of the block design stimulus time course with this expected BOLD
response waveform. The next section presents these CV and MO time series models in detail.

3. Methodological development. We compare three models for fMRI time series: the
AR(p) Ricean and Gaussian models for MO voxel time series as well as a model that utilizes
the entire complex-valued (CV) data. However, the AR(p) Ricean model and its estimation
needs development, so we use this section to do so.

https://github.com/dadrian14/arp-rice-data
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3.1. Statistical models for CV and MO time series. We first introduce notation, focus-
ing on a single voxel (and suppressing voxel-related subscripts). The CV measurement at
time t can be denoted in real/imaginary form by yRt + iyI t or in magnitude/phase form
by rt exp (iφt ) = rt (cosφt + i sinφt). Trigonometric identities in the complex plane hold

that yRt = rt cosφt , yIt = rt sinφt , rt = (y2
Rt + y2

I t )
1
2 , and φt = arctan4(yI t , yRt ), the four-

quadrant arctangent (see Glisson ((2011), p. 348)) corresponding to arctan(yI t/yRt ). We de-
note the real, imaginary, magnitude and phase time series vectors by yR = (yR1, . . . , yRn)

′,
yI = (yI1, . . . , yIn)

′, r = (r1, . . . , rn)
′ and φ = (φ1, . . . , φn)

′, with n denoting the number of
MR scans. The Rowe and Logan (2004) model states that

(1)
(
yR

yI

)
=

(
X 0
0 X

)(
β cos θ

β sin θ

)
+

(
ηR

ηI

)
,

where the expected magnitude response Xβ is coupled with the constant phase location pa-
rameter θ . The columns of X represent various components of the magnitude signal including
the baseline level and the expected BOLD contrast. The errors η = (η′

R,η′
I )

′ ∼ N (0,𝚺 ⊗𝚽),
where 𝚺 and 𝚽 are matrices of order 2 and n, specifying the real/imaginary and temporal co-
variances (the latter with an AR(p) structure), and the direct (Kronecker) product ⊗ implies
separability of these covariances. Based on this framework, we present three models:3

1. Complex-valued AR(p) (CV) model: This model takes the form of (1) with an AR(p)
structure for 𝚽 and 𝚺 = σ 2I 2. We denote the AR coefficients by α = (α1, . . . , αp)′.

2. Magnitude-only AR(p) Ricean (MOR) model: The MOR model is the MO (marginal)
counterpart of the CV model; in other words, under the MOR model the latent real and
imaginary time series follow the CV model. Under the MOR model, the probability density
function (PDF) of magnitude measurements rt is

(2) f (rt ;μt, γ0) = rt

γ0
exp

[−(r2
t + μ2

t )

2γ0

]
I0

(
μtrt

γ0

)
,

where μt = x′
tβ , x′

t is the t th row of X, γ0 = Var(ηRt ) = Var(ηI t ) is zeroth order autocovari-
ance of the latent real and imaginary errors and I0(·) is the modified Bessel function of the
first kind and the zeroth order.

3. Magnitude-only AR(p) Gaussian (MOG) model: This model assumes r = Xβ + 𝝐,
where 𝝐 follows an AR(p) structure.

These three models are summarized in Table 1, which lists the key features that differentiate
them. These features are as follows:

TABLE 1
Summary of the three models compared in this paper for complex-valued (CV) and magnitude-only (MO) fMRI

data and the features present in each model. These features are italicized whenever they appear in the text

Model features

Model Twice the Ricean
Model Abbrev. Quantities magnitudes

Complex-valued AR(p) CV ✓ ✓
Magnitude-only Ricean AR(p) MOR ✓
Magnitude-only Gaussian AR(p) MOG

3For brevity, the distinction between the notations of corresponding parameters in different models is dropped.
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1. Twice the quantities: The CV model uses the real and imaginary measurements at
each voxel and time-point, while the MOR/MOG models use only the magnitudes, so the
CV model uses twice the quantities of the MO data-based models. (This does not necessarily
mean that twice the amount of useful information is present in the CV over the MO data,
especially for models of magnitude-related activation.4)

2. Ricean magnitudes: The MOR model assumes the magnitude measurements are
Ricean distributed, while the MOG model uses a Gaussian approximation. The CV model
also has Rice-distributed magnitudes.

Table 1 illustrates the hierarchical pattern of the features present across the three models. As a
result, comparing results for the CV/MOR models allows us to isolate the influence of having
twice the quantities in the CV data. Similarly, comparing the MOR/MOG models shows the
result of the Gaussian approximation of the Ricean magnitudes.

3.2. Parameter estimation. Of the three models introduced in Section 3.1, we focus on
the methodology of the MO Ricean AR(p) (or MOR) model due to its novelty. We relegate
methodological discussions of the CV and MOG models to Section S-2.1.

The methodology for the Ricean AR(p) model fits nicely into the framework of the EM
algorithm (Dempster, Laird and Rubin (1977), McLachlan and Krishnan (2008)) with r , φ
and (r,φ) playing the roles of the observed, missing and complete data, respectively. And
because the EM algorithm and its extensions serve as our “workhorse” methodology for
the Ricean AR(p) model, we review it briefly here. An iteration of the EM algorithm con-
sists of the expectation (E-) and maximization (M-) steps. At the (k + 1)th iteration, the
E-step calculates the objective function Q(τ ;τ (k)) = Eφ|r,τ (k)[logf (r,φ;τ )], the expecta-
tion of the complete data log-likelihood with respect to the conditional distribution φ|r at
the current parameter estimates τ (k). The M-step calculates the updated parameter values
τ (k+1) = argmaxτ Q(τ ;τ (k)) by maximizing the objective function. We denote the vector
of parameters by τ = (α′,β ′, σ 2)′. The EM algorithm has well-known favorable properties
such as monotone increase of the likelihood for each iteration and reliable global convergence
(McLachlan and Krishnan (2008)).

3.2.1. EM algorithm for ML estimation under the MO AR(p) Ricean model. In this es-
timation procedure, we assume a known AR order p, after following the methods described
in Section 3.4. To compute starting values τ (0), we use the MOG model, as demonstrated in
Section S-2.1.2. With the algorithm initialized, the E- and M-steps are as follows:

3.2.1.1. E-step. The complete data log-likelihood can be shown to be

(3) logf (r,φ;τ ) = −n logσ 2 − log |Rn| − h/2σ 2

(Miller (1995), Pourahmadi (2001)), where h = α̃′Dα̃, with α̃ as the (p + 1)-vector
(1,−α1, . . . ,−αp) and D the (p + 1) × (p + 1) symmetric matrix with (i, j)th element

(4) dij =
n−i−j∑

t=1

[
rt+irt+j cos(φt+i − φt+j ) − μt+irt+j cos(φt+j − θ)

−μt+j rt+i cos(φt+i − θ) + μt+iμt+j

]
,

where μt = x′
tβ , x′

t is the t th row of X. In view of (3) and (4), the E-step involves two
kinds of expectations: the univariate expectations E[cos(φt − θ)|rt ;τ (k)], t = 1, . . . , n and
the bivariate expectations E[cos(φt − φt+j )|rt , rt+j ;τ (k)], j = 1, . . . , p, t = 1, . . . , n − j .
The univariate expectations can be shown (Section S-2.3.1) to be

Eφt |rt ;τ (k)

[
cos(φt − θ)

] = A
(
μ

(k)
t rt /γ

(k)
0

)
, t = 1, . . . , n,

4Rowe (2005a) introduces fMRI models that allow for activation in both the magnitude and phase data.
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where A(ξ) = I1(ξ)/I0(ξ), with Im(ξ) being the mth order modified Bessel function of the
first kind (Abramowitz and Stegun (1966)) evaluated at ξ .

The bivariate expectations are more cumbersome to obtain. First, we reduce
Eφt ,φt+j |rt ,rt+j ;τ (k)[cos(φt − φt+j )] to the univariate expectation

(5) Eφt |rt ,τ (k)

{
A(K(φt ))

K(φt )

[
κ cos(φt − θ) + δ

]}
,

where K(φt) = [κ2 + δ2 + 2κδ cos(φt − θ)]1/2, κ = rt+j (γ
(k)
0 μ

(k)
t+j − γ

(k)
j μ

(k)
t )/b(k) and δ =

γ
(k)
j rt rt+j /b

(k), with b(k) = γ
2(k)
0 − γ

2(k)
j . (See Section S-2.3.2 for more details.) Because

(5) cannot be evaluated analytically, we approximate it via the Delta Method (Casella and
Berger (2002)): E[f (X)] ≈ f [E(X)]. When applied to (5), the Delta Method substitutes
A(rtμ

(k)
t /γ

(k)
0 ) for each instance of cos(φt − θ), including those in the K(φt) terms.

3.2.1.2. M-step. The global maxima of the objective function is not of closed form, so we
obtain τ (k+1) through three conditional maximization steps as in the ECM algorithm (Meng
and Rubin (1993)). First, we calculate the updated estimate α(k+1) via the equations

(6)
p∑

j=1

(
d

(k)
ij + 2jγ

(k)
|j−i|

)
αj = d

(k)
i0 , i = 1, . . . , p,

where d
(k)
ij is the E-step expectation of dij with μt evaluated at μ

(k)
t and γ

(k)
j = d

(k)
0j /(2n).

Next, we calculate

(7) β(k+1) = (
X′R−1

n X
)−1

X′R−1
n u(k),

where R−1
n is obtained from α(k+1) (as in Pourahmadi (2001)) and u(k) is a vector of n

variables with t th element u
(k)
t = rtA(rtμ

(k)
t /γ

(k)
0 ). Note that it may be necessary to en-

force the boundary conditions Xβ(k+1) ≥ 0, in which case (7) needs to be modified as
discussed in Section S-2.3.3. Finally, we calculate σ 2(k+1) = h(k+1)/(2n), where h(k+1) =
α̃′ (k+1)D(k+1)α̃(k+1) and D(k+1) is a matrix as before with terms d

(k+1)
ij evaluated using

μ
(k+1)
t = x′

tβ
(k+1).

3.2.2. Hybrid algorithm for ML estimation. As the EM algorithm progresses through it-
erations, we monitor convergence using the maximum change in the parameter values across
successive iterations. However, as is commonly known (McLachlan and Krishnan (2008)),
the convergence of the EM algorithm is slow at low SNRs, especially when β0/σ < 2.
In order to speed up convergence, we employ the hybrid algorithm of Aitkin and Aitkin
(1996), which alternates the EM iterations with those from a modified Newton–Raphson
(NR) method where the Fisher information matrix is replaced by the empirical information
matrix (Meilijson (1989)). The hybrid algorithm starts with five EM iterations before switch-
ing to the modified NR method until convergence of the parameters. In the latter case, we
halve the NR step size up to five times.

Parameter updates from the modified Newton–Raphson method are given by

(8) τ (k+1) = I −1
e

(
τ (k); r)

S
(
r;τ (k)),

where I e(τ ; r) is the empirical information matrix and S(r;τ ) is the score statistic. Both
are constructed from the contributions to the score statistic at t=p+1,p+2, . . . , n, denoted
by s(rt ;τ ) = ∂

∂τ logf (rt |rt−1, . . . , rt−p;τ ), which can be calculated from the complete data
log-likelihood using the identity (adapted from McLachlan and Krishnan (2008))

(9) s(rt ;τ ) = Eφ|r;τ
[

∂

∂τ
logf

(
(rt , φt )|(rt−1, φt−1), . . . , (rt−p,φt−p);τ )]

.
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These calculations, detailed in Section S-2.3.4, use quantities from the E-step. The empirical
information matrix is calculated as

(10) I e(τ ; r) =
n∑

t=p+1

s(rt ;τ )s′(rt ;τ ) − 1

n − p
S(r;τ )S′(r;τ ),

where S(r;τ ) = ∑n
t=p+1 s(rt ;τ ).

3.3. Calculation of test statistics under the MO AR(p) Ricean model. We illustrate the
calculations of Wald and likelihood ratio test statistics for a general test for activation, which
posits H0 : Cβ = 0 against Ha : Cβ �= 0. Each test statistic is based on the MLEs τ̂ calculated
by the above EM/NR hybrid algorithm.

3.3.1. Wald test. The Wald test statistic is given by

(11) W = (Cβ̂)′
[
CI −1

e (τ̂ ; r)C′]−1
(Cβ̂)

and asymptotically follows a null χ2
m-distribution, where m is the rank of C. It utilizes the

empirical information matrix I e of (10). However, our simulation studies reported in Section
S-2.4.1 indicate that the Wald test statistic does not follow this null distribution for low-
SNR time series, that is, when β0/σ < 2. This shortcoming of the Wald test motivates the
derivation of the likelihood ratio test (LRT) statistic described below.

3.3.2. Likelihood ratio test for Ricean AR(1) model. We derive an LRT for the Ricean
AR(1) model, whose false positive rate better conforms with the significance level than the
Wald test for low-SNR time series, as shown in Figure S-6. This LRT statistic is only for the
Ricean AR(1) model, as the observed data loglikelihood is quite intractible for higher AR
orders.5 From standard results the LRT statistic Λ = 2[�(τ̂ ) − �(τ̃ )], where �(·) is the log-
likelihood function logL(·) and τ̂ and τ̃ represent the MLEs of τ under Ha and H0, respec-
tively. Like the Wald statistic, the LRT statistic asymptotically follows a null χ2

m-distribution.
To derive the likelihood function L(τ ) = f (r;τ ) for the Ricean AR(1) model, we note that
f (r;τ ) can be factored as f (r1;τ )

∏n
t=2 f (rt |rt−1;τ ), where f (r1;τ ) is the Ricean PDF of

(2). It can be shown (see Section S-2.4.2) that the conditional PDF f (rt |rt−1;τ ) is equal to

(12)
rt

σ 2 eC0

[
I0

(
rt−1μt−1

γ0

)]−1 ∞∑
m=0

ωmIm(C1)Im(C2)Im(C12),

where C0 = −[r2
t +μ2

t +α2(r2
t−1 +μ2

t−1)− 2αμt−1μt ]/(2σ 2), C1 = rt−1(μt−1 −αμt)/σ
2,

C2 = rt (μt −αμt−1)/σ
2 and C12 = αrt−1rt/σ

2. Also, in (12), ωm = 1 for m = 0 and ωm = 2
for m ≥ 1.

3.4. Choosing the order of the AR model. We suggest a sequential testing approach
for determining the AR order p. Starting with k = 1 and for increasing k, we posit
H0 : p = k − 1 vs. Ha : p ≥ k (or, in terms of the AR coefficients, H0 : ∀j ≥ k,αj = 0 vs.
Ha : ∃j ≥ k : αj �= 0). The estimated AR order is then p̂ = k′ − 1, where k′ is the first k in
the sequence of tests for which H0 is not rejected. An LRT statistic given by 2(�k − �k−1),
where �k is the optimized log-likelihood function for the AR(k) model, may be employed
under the CVS and MOG models. For the MOR model, we use the Wald test statistic

5Recall that the Wald test statistic can derived for any AR order.
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α̂2
k/I

−1
e (τ̂ , r)αkαk

, where the denominator is the diagonal entry of the inverse empirical in-
formation matrix corresponding to αk . From standard results, each test statistic (whether LRT
or Wald) is asymptotically χ2

1 -distributed under H0 : p = k − 1.
It can be shown that the significance level δ applied to each test controls “over-detecting”

the order (i.e., p̂ > p) in the sense that δ = P(p̂ > p|p̂ ≥ p); see Adrian, Maitra and Rowe
((2018), Section S-2.4) for a justification. Section S-2.5 uses simulation to demonstrate that
the sequential testing approach to detecting p gives similar results to approaches based on
the AIC and BIC (Akaike (1973), Schwarz (1978)).

Our development in this section has laid the groundwork for our investigation of fMRI
analyses using the three models. We now proceed with our evaluations.

4. Simulation experiments. We perform simulation experiments to compare the AR(p)
Ricean model to two other models in a setting of known truth; see Section 3.1 and Table 1 for
a summary of these three models: the CV, MOR and MOG models. We simulated low-SNR
complex-valued time series under the CV model—and, therefore, also magnitude time series
under the MOR model—with the X matrix of the finger-tapping experiment (see Section 2).
We used white noise variance σ 2 = 1, AR(1) temporal dependence with AR parameters α =
0.2,0.4,0.6, and 0.8, baseline signal levels β0 from 0.5 to 5.0 and activation levels β1 =
0.1,0.2 and 0.3. Thus, the SNRs and CNRs of the simulated data corresponded with these in
the dataset (see Figure S-3). For each combination of parameter values, we generated 10,000
voxel time series and fit each of the three models under an assumed AR order of 1. Our model
comparison analysis has two main components: properties of the parameter estimates and
activation detection performance. To quantify simulation variability, we calculated standard
errors for all quantities using the bootstrap method (Efron and Tibshirani (1986)) with 1000
replications.

4.1. Properties of parameter estimates. Figure 2 summarizes the properties of the pa-
rameter estimates, displaying the biases, standard errors (SEs) and root mean squared errors
(RMSEs) of β̂0, β̂1, σ̂ 2 and α̂. (It shows results for α = 0.4; results for other αs are given
in Figure S-9.) Focusing first on the biases, it is immediately evident that the MOG model
produces the most biased parameter estimates due to its Gaussian approximation of the truly
Ricean magnitudes. Specifically, the biases of β̂0 and σ̂ 2 result from the mean and variance
of the Rice distribution (which are the quantities that the MOG model estimates) being above
and below the Ricean location and scale parameters (Zhu et al. (2009)). The MOG model
biases decrease with increasing β0 because the Gaussian approximation to the Rice distri-
bution improves with SNR. These results match those already observed for the temporally
independent case (Adrian, Maitra and Rowe (2013), Solo and Noh (2007)), and additionally,
we see here that the MOG model-based estimate of the AR coefficient α is the most biased as
well. The MOR model-based parameter estimates also show some biases at the lowest SNR
time series; the CV model-based estimates are unbiased in all cases.

Switching our focus to the SEs, we note that the CV model-based SEs of σ̂ 2 and α̂ are
lower than those for the MO models. This corresponds to a similar result, observed in Rowe
(2005b), about the sampling variances of σ̂ 2 for the temporally independent case and suggests
that the twice the quantities feature of the CV data is driving this difference. Overall, the RM-
SEs, which account for both bias and SE as RMSE2(·) = Bias2(·)+SE2(·), are lowest for the
CV model; in addition, the CV model-based results are constant with β0, that is, not related
to the SNR. This suggests that, provided the CV data is collected, the CV model produces
the most reliable parameter estimates (arguing against the current practice of discarding the
phase data). However, given that archival datasets (of which there are massively many) do
not have phase data stored, our results here also suggest the parameter estimation benefits of
using the AR MOR model in place of the currently-used AR MOG model, especially in terms
of bias for low SNR time series.
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FIG. 2. Biases, SEs (SE) and RMSEs (RMSE) of β̂0, β̂1, σ̂ 2 and α̂ under three models for simulated time series
under β1 = 0.2, α = 0.4 and different values of β0. The shaded areas cover the estimate ± 2 standard error
intervals.

4.2. Activation detection performance. Next, we compare activation detection perfor-
mance, calculating LRT statistics for the activation test of H0 : β1 = 0 vs. Ha : β1 �= 0 for
each simulated time series. To summarize the power of each LRT statistic, we calculated the
partial area under the receiver operating characteristic curve or the pAUC (McClish (1989),
Zhou, Obuchowski and McClish (2011)). The pAUC is the area under the ROC curve—where
the ROC curve plots the true positive rate (TPR) against the false positive rate (FPR)—over
a limited range of FPR values.6 The rationale for using the pAUC rather than the (full) AUC,
the area under the ROC curve for all FPR values from 0 to 1, is to exclude contributions to the
curves from FPR values that are never used in practice and to highlight differences between
the methods in the part of the ROC that are most likely to be used in practice. For instance,
using FPR values greater than 0.1 would allow for far too many false positives than practi-
cally ever used; indeed, our significance level threshold used on the real data in Section 5
is 0.001. Therefore, we calculated the pAUCs over a FPR range of 0 to 0.05. We calculated
the pAUCs (separately for each combination of parameters β0, β1 and α) as the average of
the TPRs for the significance levels δ = 0.0001,0.0002,0.0003, . . . ,0.0500; each TPR is the
proportion of the 10,000 simulated test statistics greater than the χ2

1−δ,1 quantile.
As shown in Figure 3, the pAUCs of simulated LRT statistics are consistently in the order

(highest to lowest) of CV, MOR and MOG models. While the figure shows between-panel
differences in the pAUCs, due to the relationships between the CNR and the values of β1
and α (positive and negative relationships, respectively), the within-panel patterns are quite
similar. While the CV model-based pAUCs are relatively constant as a function of β0, the
pAUCs of the two MO model-based LRTSs decrease with β0.

6There are also pAUC versions that limit the TPR range (or both the FPR and TPR ranges), but we use a
FPR-limited pAUC here.
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FIG. 3. The partial AUCs of the magnitude-only (MO) data-based LRT statistics decrease at low SNRs relative to
their complex-valued (CV) data-based counterparts. Also, the Ricean (MOR) model-based pAUCs show improve-
ments over those from the Gaussian (MOG) model. The shaded regions show the pAUCs ± 2 standard errors.

We attribute the increased MOR model-based pAUCs relative to the MOG model to proper
modeling of the Rice-distributed magnitudes: the MOG model resorts to a Gaussian approx-
imation of the Rice distribution. Figure 4 displays the percent pAUC increases of the MOR
model-based LRTSs relative to the MOG model. We note that the sizes of MOR model im-
provements in pAUC increase as β0 and β1 decrease and α increases, which correspond to
decreases in SNR and CNR. While it is not surprising that a lower SNR (with worse Gaussian
approximation of the Ricean magnitudes) is associated with a larger MOR model improve-
ment, it is worth noting that improvement is larger for lower activation levels (CNRs) as
well.

FIG. 4. Relative improvement in MOG model-based pAUCs by MOR model, that is, (MOR–MOG) / MOG.
Shaded areas show estimate ± 2 standard errors.
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FIG. 5. Plots of the information matrices as a function of the SNR.

As for the CV vs. MO comparison, the twice the quantities feature seems to be driving
the difference in detection performance. The additional information in the phase data (again,
which is usually not collected) appears to be more valuable to the activation detection as β0
(the SNR) decreases, as shown by the increasing discrepancy in CV/MO pAUCs. In fact,
we may view this in terms of the “missing information principle” (Orchard and Woodbury
(1972)). Section S-3.1.1 describes how to calculate the observed (MO), missing (phase only)
and complete (CV) data-based the Fisher information matrices by applying the EM algorithm.
Interestingly, the curves of the “observed information” (in the MO data) and the “complete
information” (in the CV data) in Figure 5 look similar to the MO and CV model-based pAUC
curves in Figure 3. Both figures suggest that the phase data contain useful information about
the activation, even though the activation itself occurs in the magnitude signal Xβ .

To summarize, the results of our experiments suggest that modeling the Ricean magnitudes
produces less-biased parameter estimates and better activation detection performance than
the Gaussian approximation. Also, using twice the quantities in CV rather than MO data-
based models leads to parameter estimates with less variation and additionally improved
activation detection. Although using the CV data produces the best estimation and activation
detection, the CV data has historically not been collected; in this case, utilizing the Ricean
model when only magnitude (archival) data is available produces sizeable gains over the
Gaussian approximation.

5. Results on low-signal fMRI dataset. In this section we identify activation in the low-
SNR fMRI dataset introduced in Section 2 under the CV, MOR and MOG models. Working
with each voxel time series of the dataset separately, we first detected the AR orders (see
Figure S-10) and then tested for activation using H0 : β1 = 0 vs. Ha : β1 �= 0, obtaining
p-values from the LR and Wald test statistics under the null χ2

1 -distribution. To determine
activation, we used a significance level threshold of 0.001 (Woo, Krishnan and Wager (2014)).

5.1. Activation detection in raw data. We display activation maps of the second slice7

according to each of the three models in Figure 6. Each map shows a grayscale anatomi-
cal image (the magnitude image at the first time point) with the voxels having p-values less
than 0.001 colored according to the legend. The activation is rather sparse, except for a re-
gion containing the left central sulcus (Figure 1)—recall, the site guiding right-hand function
for normal healthy adults—so we focus on this region of interest (ROI) in the inset maps.

7We focus on the second slice (in the superior direction) because it shows the strongest activation. For compar-
ison with the two neighboring slices, see Figure S-11.
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FIG. 6. Activation maps with inset maps showing left central sulcus ROI; numbered voxels represent those having
test statistics with the lowest p-values.

Specifically, we focus on the 10 voxels in this ROI with test statistics that provide the lowest
minimum p-value over the three models, which are identified by numerals (from 1 = low-
est to 10 = highest p-value) in the inset maps of Figure 6. This numbering carries over to
Table 2 where the size of the p-values can be compared more clearly across models. (See
Figure S-12 for a graphical representation of Table 2.) Though this comparison varies of
across voxels, we note that the average of the negative log base-10 p-values is lowest for the
CV model, followed by the MOR model and then by the MOG model. As we saw in simu-
lation experiments, the experimental data also indicates that if the CV data is available, the
CV model produces better activation detection power than MO data-based models. However,
in the common case of MO data, our AR(p) Ricean model shows more power than the the
corresponding model based on a Gaussian approximation to the Rice distribution.

5.2. Adding noise to the raw data. To further investigate the effect that low SNR has
on activation detection, we added more noise to the acquired CV data. So for the 10 voxels
identified in Figure 6 with acquired CV time series (yRt , yI t ), t = 1, . . . ,621, we obtained
new synthetic data y∗

Rt = yRt + wRt and y∗
I t = yIt + wIt , with wRt ,wIt ∼ i.i.d. N(0, σ 2

a ).
Because a representative, data-based estimate of the noise SD is 0.15, we generated data us-
ing σa = 0.15,0.20,0.25 and 0.30. Adding noise to the original data in this manner reduces
the SNR and CNR (see Figure S-13) as would occur with increasing spatial resolution or
decreasing field strength of the MR scan. Table 3 shows the proportions of the 10,000 gen-
erated datasets in which each of the 10 voxels was detected under each model at the 0.001
significance level (also see Figure S-14). With the added noise, the detection power more
consistently follows the order of CV (greatest), MOR and MOG (least) models across the 10
voxels than the p-values of the raw data in Figure 6.

TABLE 2
Negative logarithm (base 10) of the p-values for the voxels numbered 1–10 in the inset maps of Figure 6 for test

statistics under the CV, MOR and MOG models. (For instance, the CV model-based p-value for voxel 1 is
10−8.82.) Also, the “avg” column represents the average across voxels

Voxel numbers from Figure 6

Model 1 2 3 4 5 6 7 8 9 10 avg

CV 8.82 8.70 8.18 7.53 5.31 4.42 4.65 3.14 4.24 3.61 5.86
MOR 8.48 5.52 6.93 5.20 5.71 5.21 5.20 5.00 4.37 4.13 5.57
MOG 8.49 4.96 6.94 5.20 5.71 5.03 5.21 5.00 4.37 4.13 5.50
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TABLE 3
Proportions (and their standard errors) of simulated time series detected as detected when noise with standard
deviation σa was added to the raw data for the 10 voxels identified in Figure 6. The “avg” rows show average

proportions over the 10 voxels

SD of added noise σa

Voxel Model 0.15 0.2 0.25 0.3

1 CV 0.951 (0.002) 0.731 (0.004) 0.476 (0.005) 0.304 (0.004)
1 MOR 0.931 (0.002) 0.670 (0.004) 0.390 (0.004) 0.216 (0.004)
1 MOG 0.903 (0.003) 0.625 (0.004) 0.363 (0.004) 0.200 (0.004)

2 CV 0.947 (0.002) 0.719 (0.004) 0.479 (0.005) 0.306 (0.004)
2 MOR 0.929 (0.002) 0.660 (0.004) 0.409 (0.004) 0.230 (0.004)
2 MOG 0.868 (0.003) 0.579 (0.005) 0.357 (0.004) 0.204 (0.004)

3 CV 0.896 (0.003) 0.633 (0.004) 0.399 (0.004) 0.238 (0.004)
3 MOR 0.717 (0.004) 0.398 (0.004) 0.212 (0.004) 0.103 (0.003)
3 MOG 0.718 (0.004) 0.405 (0.004) 0.209 (0.004) 0.102 (0.003)

4 CV 0.880 (0.003) 0.611 (0.004) 0.378 (0.004) 0.229 (0.004)
4 MOR 0.408 (0.004) 0.180 (0.004) 0.090 (0.003) 0.045 (0.002)
4 MOG 0.351 (0.004) 0.156 (0.003) 0.081 (0.002) 0.042 (0.002)

5 CV 0.490 (0.005) 0.261 (0.004) 0.152 (0.003) 0.090 (0.003)
5 MOR 0.513 (0.005) 0.244 (0.004) 0.121 (0.003) 0.057 (0.002)
5 MOG 0.442 (0.005) 0.210 (0.004) 0.106 (0.003) 0.052 (0.002)

6 CV 0.811 (0.004) 0.525 (0.005) 0.314 (0.004) 0.192 (0.004)
6 MOR 0.788 (0.004) 0.468 (0.005) 0.242 (0.004) 0.132 (0.003)
6 MOG 0.629 (0.004) 0.357 (0.004) 0.188 (0.004) 0.108 (0.003)

7 CV 0.361 (0.004) 0.187 (0.004) 0.109 (0.003) 0.068 (0.002)
7 MOR 0.412 (0.004) 0.201 (0.004) 0.108 (0.003) 0.060 (0.002)
7 MOG 0.372 (0.004) 0.187 (0.004) 0.102 (0.003) 0.057 (0.002)

8 CV 0.443 (0.005) 0.240 (0.004) 0.133 (0.003) 0.085 (0.003)
8 MOR 0.410 (0.004) 0.214 (0.004) 0.108 (0.003) 0.065 (0.002)
8 MOG 0.322 (0.004) 0.171 (0.003) 0.091 (0.003) 0.057 (0.002)

9 CV 0.293 (0.004) 0.165 (0.003) 0.085 (0.003) 0.058 (0.002)
9 MOR 0.282 (0.004) 0.143 (0.003) 0.068 (0.002) 0.038 (0.002)
9 MOG 0.283 (0.004) 0.142 (0.003) 0.067 (0.002) 0.039 (0.002)

10 CV 0.193 (0.004) 0.109 (0.003) 0.067 (0.002) 0.042 (0.002)
10 MOR 0.216 (0.004) 0.109 (0.003) 0.054 (0.002) 0.028 (0.002)
10 MOG 0.182 (0.004) 0.093 (0.003) 0.048 (0.002) 0.025 (0.001)

avg CV 0.627 (0.001) 0.418 (0.001) 0.259 (0.001) 0.161 (0.001)
avg MOR 0.561 (0.001) 0.329 (0.001) 0.180 (0.001) 0.097 (0.001)
avg MOG 0.507 (0.001) 0.293 (0.001) 0.161 (0.001) 0.089 (0.001)

6. Discussion. In this paper we developed a Ricean model for fMRI magnitude time
series that incorporates autoregressive time dependence. Our approach applies AR(p) errors
to the Gaussian-distributed real and imaginary components from which the magnitudes are
computed. We estimated model parameters from the MO data using the EM algorithm with
the phase portion of the latent complex-valued data playing the role of missing data. We then
extended the EM algorithm to derive Wald and LRTs for activation and AR order detection.

We compared this AR(p) Ricean model to two other models: the CV model for complex-
valued data and the MOG model which employs a Gaussian approximation for the truly
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Rice-distributed magnitudes. As previously discussed, complex-valued fMRI data is rarely
collected in practice (although we strongly advocate for it), so our main focus is how to make
the best use of existing (i.e., archived) magnitude-only data through the MOR rather than
the MOG model. We expected the CV model to perform better than the two MO data-based
models simply due to the CV data having twice the quantities and the MOR model to perform
better than the MOG model due to properly modeling the Ricean magnitudes.

Simulation-based results confirmed these expectations when we evaluated the quality of
parameter estimates and the activation detection under each model. The parameter estimates
of the CV model had lower RMSEs than the MO data-based models, and the MOR model-
based parameter estimates were much less biased than those from the MOG model. Simi-
larly, we demonstrated greater activation detection power (as measured by pAUC) for the CV
model than the two MO data-based models, and the MOR model-based pAUCs were greater
than those from the MOG model. For all comparisons the differences were greatest at low
SNRs.

We then compared these models on a finger-tapping experiment, acquiring the data using
the body coil to study a low-SNR dataset. For voxels in the expected activation region show-
ing the most activation, the CV model produced the lowest average p-values, followed by
the MOR model (and the MOG model last). Although the order of the p-values varied by
voxel, we are able to more consistently superior activation detection of the CV model (and
MOR model greater than MOG model) when we added extra simulated white noise to the
experimental voxel time series, which decreased the SNR.

A reviewer has asked about the computational complexity of MO Ricean over CV data-
based methods. We note that, while the CV-based analysis has a larger storage requirement,
the more substantial computational issue is in terms of CPU usage. The CV-based and Gaus-
sian MO models, which use direct methods to estimate parameters, have lower computational
complexity than the Rice-based model. However, the Rice-based MO analysis is more accu-
rate, in terms of parameter estimation and activation detection than the Gaussian MO-only
analysis, especially at lower SNR.

Future directions for this research can explore fMRI time series models that allow for ac-
tivation in magnitude and phase (Rowe (2005a)). The models focused on in this article (even
the CV data-based ones) have assumed task-related changes in magnitude only, with no task-
related phase changes. It may be worth exploring a single model that allows for both. Another
area for future work lies in generalizing the modeling of magnitude time series beyond the
AR(p) Rice model presented here. MR images collected by simultaneous acquisition from
multiple independent coils (Tristán-Vega, Aja-Fernández and Westin (2012)) can be shown
to follow the noncentral chi distribution, with degrees of freedom equal to twice the number
of coils (Wegmann, Eklund and Villani (2017)). The Rice distribution is the special case for
a single coil and two degrees of freedom.
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SUPPLEMENTARY MATERIAL

Supplement to “Rice-distributed autoregressive time series modeling of magnitude
functional MRI data” (DOI: 10.1214/24-AOAS1981SUPPA; .pdf). Section S-1 provides
details of the low-signal finger-tapping dataset used in this paper. Section S-2 provides addi-
tional methodological details and derivations. Additional details on simulation experiments
are in Section S-3, while more details on the analysis of the finger-tapping dataset are pro-
vided in Section S-4.

Dataset (DOI: 10.1214/24-AOAS1981SUPPB; .zip). Also available on GitHub.
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