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Abstract
Functional MRI is a popular noninvasive technique for mapping brain regions activated by specific
brain functions. However, as fMRI measures brain activity indirectly through blood flow, the so-
called “brain or vein” problem refers to the difficulty in determining whether measured activation
corresponds to (desired) brain tissue or (undesired) large veins, which may be draining blood from
regions with activated neurons. Now, fMRI data consist of both magnitude and phase components
(i.e., it is complex-valued), but in the vast majority of statistical analyses, only the magnitude data
is utilized. However, while activation in the magnitude component can come from both “brain
or vein”, previous work has demonstrated that activation in the phase component “discriminates”
between the two: phase activation occurs in voxels with large, oriented vessels but not in voxels with
small, randomly oriented vessels immediately adjacent to brain tissue. Following this motivation,
we have developed a model that allows for activation in magnitude and phase, one more general
than those previously proposed.
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1. Introduction

Functional magnetic resonance imaging (fMRI) is a prominent non-invasive modality for
studying human brain function. It is built upon the Blood Oxygen Level Dependent (BOLD)
contrast (Bandettini et al., 1993; Belliveau et al., 1991; Kwong et al., 1992; Ogawa et al.,
1990), where firing neurons lead to changes in the blood oxygen levels of neighboring
vessels, and the magnetic resonance (MR) signal fluctuates due to the differing magnetic
susceptibilities of oxygenated and deoxygenated hemoglobin (Lazar, 2008). Scientists can
gain insight on the functional structures of the brain by analyzing time courses of MR
images acquired while a subject performs a designed series of tasks.

The acquired fMRI data at each voxel and time-point is complex-valued, containing
real and imaginary (or equivalently, magnitude and phase) components. This is a result of
how the data is collected: the originally measured, complex-valued k-space data (Brown
et al., 1982; Ljunggren, 1983; Tweig, 1983) consists of the different frequency contributions
to the signal from each voxel resulting from magnetic field gradients (Jezzard and Clare,
2001). Then, the application of the inverse Fourier transform (Jain, 1989), a complex-
valued operation, on the k-space data separates these frequencies and thus localizes each
voxel’s measurements.

However, statistical analysis of fMRI data is almost always on the magnitude data
alone, in which case the acquired phase data is discarded (Lee et al., 2007; Rowe and
Logan, 2004) and the focus is on task-related magnitude changes (Rowe and Logan, 2005).
This practice has carried over from structural MRI – which focuses on determining brain
anatomy, not function. But the including the phase information has proved useful in several
ways.
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First, the phase information is useful in visualizing anatomical brain structures, in vivo,
at a level previously only available from cadavers (Reichenbach, 2012). This imaging first
focused on cerebral venous vessels — i.e., MR venography (Reichenbach et al., 1997) –
and was extended to brain structures such as deep brain nuclei, white matter fiber bundles,
and tissue iron deposits, in what came to be known as susceptibility weighted imaging
(Haacke et al., 2004; Rowe and Haacke, 2009).

Second, including the phase has been shown to improve activation detection in fMRI,
even for magnitude-only task-related activation. That is, models for complex-valued time
series with task-related changes in the mean magnitude but assuming constant phase have
shown improved activation detection over models that utilize the magnitude-only data
(Adrian et al., 2018; Nan and Nowak, 1999; Rowe, 2005b; Rowe and Logan, 2004). The
largest differences between complex-valued and magnitude-only data-based activation oc-
cur at low signal-to-noise ratios (Rowe and Logan, 2004) and when there is a correlation
between the real and imaginary error time series (Adrian et al., 2018), the latter which is
induced by spatial smoothing (Karaman et al., 2014; Nencka et al., 2009).

Most compelling, phase task-related activation is useful in the so-called “brain or vein”
problem (Frahm et al., 1994). This problem seeks to determine whether BOLD signal
changes are dominated by (desired) grey matter or (undesired) macrovasculature, such as
the cortical cerebral veins and larger pial veins. In this context, Menon (2002) distinguishes
between voxels containing macrovascular veins and those with only microvascular veins;
the former have vessels that can be considered essentially linear and oriented while the
venuoles in the latter are more or less randomly oriented. While magnitude task-related
changes occur in both types of voxels, Hoogenrad et al. (1998) presents theory and data
supporting that a task-related phase change is expected for in macrovascular voxels but not
in microvascular ones.1

Menon (2002) proposes a method for suppressing macrovascular BOLD signals via the
linear relationship between magnitude and phase changes. Nencka and Rowe (2007) show
that this method can at times overcorrect and induce negative activation and also illustrate
how the Rowe and Logan (2004) constant-phase model can be used to bias against voxels
with task-related phase changes, which is demonstrated in experimental data in Nencka
et al. (2008).

An important application of fMRI is presurgical planning of invasive neurosurgical
procedures (Pillai, 2010). For example, experimental paradigms incorporating fingertap-
ping, hand brushing, or sponge squeezing are used to locate the functional central sul-
cus, the region responsible for hand function in healthy adults, prior to neurosurgery (Lee
et al., 1998, 1999). However, the presence of a draining vein in the central sulcus (Du-
vernoy, 1999) makes distinguishing pre- from postcentral gyrus activity extremely difficult
(Menon, 2002), complicating neurosurgical planning. This context provides our motiva-
tion for developing statistical models for detecting magnitude and phase activation from
complex-valued fMRI time series.

1.1 Statistical models for detecting magnitude and phase activation

Statistical models for detecting magnitude and phase activation have two major groups, de-
pending on whether the real and imaginary means are phase coupled. To illustrate, we in-
troduce notation, focusing on a single voxel time series (and thus suppressing voxel-related
subscripts). We denote the real and imaginary measurements at time t by yRt and yIt,
respectively, which are well-known to follow a bivariate normal distribution (Henkelman,

1This is somewhat complicated by the work of Feng et al. (2009), who state that a non-zero (though small)
phase change can be present in a region with randomly oriented vessels.



1985; Macovski, 1996; Wang and Lei, 1994). And, utilizing linear model structure, we de-
fine an X matrix (with tth row x′

t) that models signal changes. In a simple setup with two
columns, one column is an intercept modeling the baseline signal level and the other column
models expected BOLD signal changes (Glover, 1999). Now, under a phase-coupled (PC)
model, the real and imaginary means are connected by the phase location parameter θt;
that is, E(yRt) = x′

tβ cos θt and E(yIt) = x′
tβ sin θt. In contrast, the non-coupled (NPC)

model does not connect these means, stating that E(yRt) = x′
tβR and E(yIt) = x′

tβI .
Non-phase-coupled approaches include complex-valued cross-correlation (Lai and Glover,
1997) and independent component analysis (Calhoun et al., 2002) and have been used in
the steady-state free precession fMRI context (Lee et al., 2007). Phase-coupled approaches
began with the assumption constant phase and magnitude-only activation (Nan and Nowak,
1999; Nencka and Rowe, 2007; Rowe and Logan, 2004) and were expanded to allow for
task-related phase changes as well (Rowe, 2005a).

A distinct advantage of the PC approach is that it allows for separate tests of magnitude
and phase task-related changes; the NPC approach only offers a test of combined magni-
tude/phase task-related changes in the complex plane. Given the previous discussion of the
“brain or vein” problem, its implications in neurosurgical planning, and the use of phase
task-related activation detection in discriminating between these two types of voxels, the
separate magnitude and phase task-related tests offered by phase coupled models are valu-
able. Activation detection analysis based on the NPC model is somewhat easier to carry
out, as parameter estimates follow from standard results. Early on, Rowe (2005a) utilized a
Taylor approximation to simplify the PC model-based analysis, but the resulting parameter
estimates may not fully maximize the likelihood function.

Later work in this area offers improvements to phase-coupled model implementation.
First, a link function maps the angular range −π to π to the unbounded linear predictor
space (Fisher and Lee, 1992; Rowe et al., 2007). Additionally, the Adrian et al. (2018)
model allows for temporal correlation within and cross correlation between the real and
imaginary errors. In experimental data, these two types of correlation were shown to in-
crease with the amount of spatial smoothing (see also Karaman et al., 2014; Nencka et al.,
2009).

1.2 Contributions of this paper

In this paper, we improve on the phase-coupled complex-valued time series model for mag-
nitude and phase task-related activation. Starting with the Rowe (2005a) model, we merge
the Fisher and Lee (1992) link function and the Adrian et al. (2018) error structure to cre-
ate a more general and reliable modeling framework. Further, we develop methodology
for full ML estimation of the parameters and associated likelihood ratio tests for magni-
tude and phase activation. Section 2 provides methodological details regarding the state-
ment of this model, estimation of its parameter, and implementation of hypothesis testing
procedures. Section 3 presents the results of several simulation experiments showing the
improved phase activation detection performance of this model performance over an un-
coupled model and a phase-only data-based model. We close with a discussion in Section
4.

2. Methodology

Denote the real, imaginary, magnitude, and phase time series at a single voxel (suppressing
subscripts for voxels) by yR = (yR1, . . . , yRn)

′, yI = (yI1, . . . , yIn)
′, r = (r1, . . . , rn)

′,
and ϕ = (ϕ1, . . . , ϕn)

′, respectively, with n denoting the number of scans.



2.1 Models

The centerpiece of our methodological development is the following extension of the Rowe
(2005a) model: (

yR

yI

)
=

(
CX 0
0 SX

)(
β
β

)
+

(
ηR

ηI

)
, (1)

where C and S are n× n diagonal matrices with tth entries cos θt and sin θt, respectively,
X is an n × q1 matrix describing changes in the magnitude signal, and β is a q1-vector.
The errors η = (η′

R,η
′
I)

′ ∼ N (0,Σ⊗Φ), where Σ and Φ are matrices of order 2 and n,
specifying the real/imaginary and temporal covariances, and the direct (Kronecker) product
⊗ implies separability of these covariances. For identifiability, we apply the constraint
Xβ ≥ 0. The phase parameters θt are modeled in terms of covariates zt and corresponding
parameters δ (both q2 vectors) as θt = δ0 + g(z′

tδ) with g(·) = 2 arctan(·). As in Adrian
et al. (2018), the matrix Σ is parameterized as ΣRR = σ2

R, ΣII = σ2
I , and ΣRI = ρσRσI .

Further, Φ = Rn is specified by the AR(p) parameters α = (α1, . . . , αp). Denoting the
model parameters by τ = (α,β, δ0, δ, σ

2
R, σ

2
I , ρ), model (1) has log-likelihood function

given by

logL(τ |yR,yI) = −n/2 log[σ2
Rσ

2
I (1− ρ2)]− log |Rn| − h/[2(1− ρ2)], (2)

where

h =

(
ηR

ηI

)′
(

1
σ2
R
R−1

n − ρ
σRσI

R−1
n

− ρ
σRσI

R−1
n

1
σ2
I
R−1

n

)(
ηR

ηI

)
. (3)

2.2 ML estimation

Maximum likelihood estimation of the model parameters consists of a mix of closed-form
equations and Newton-Raphson steps. We present methods for obtaining starting values
for the parameter estimates in Section 2.2.1 before presenting the ML equations in Section
2.2.2.

2.2.1 Starting values

Starting values δ(0)0 , β(0), and δ(0) can be calculated as follows. First, δ(0)0 = arctan4(s, c),
where the arctan4(y, x) is the 4-quadrant arctangent (see Glisson, 2011, Page 348) corre-
sponding to arctan(y/x), s =

∑n
t=1 rt sinϕt and c =

∑n
t=1 rt cosϕt. Second, β(0) =

(X ′X)−1Xr∗, where r∗ is an n-vector with tth entry r∗t = rt cos(ϕt − δ
(0)
0 ). Last, δ(0)

is calculated as δ(0) = 1
2(Z

′WZ)−1Z ′v, where W is an n-diagonal matrix with tth entry

wtt = x′
tβ

(0)rt cos(ϕt − δ
(0)
0 ) and v is an n-vector with tth entry vt = x′

tβ
(0)rt sin(ϕt −

δ
(0)
0 ).

2.2.2 Estimation equations

Beginning with the starting values δ
(0)
0 , β(0), and δ(0), MLEs for the parameters may be

obtained by iteratively applying equations (4)-(10) until convergence of the log-likelihood
function. The equations for σ2

R, σ2
I , and ρ are

σ̂2
R = (yR − ĈXβ̂)′R̂

−1

n (yR − ĈXβ̂)/n (4)

σ̂2
I = (yI − ŜXβ̂)′R̂

−1

n (yI − ŜXβ̂)/n (5)

ρ̂ = (yR − ĈXβ̂)′R̂
−1

n (yI − ŜXβ̂)/(nσ̂Rσ̂I) (6)



where Ĉ and Ŝ are n-diagonal matrices with tth elements cos θ̂t and sin θ̂t, respectively,
with θ̂t = δ̂0 + g(z′

tδ̂). (In all cases, quantities with ”hats” represent the most current
estimates.) For the first iteration, In should be substituted for R̂

−1

n ; afterwards, R̂
−1

n is a
(2p + 1)-diagonal matrix that can be assembled from α̂ (see Pourahmadi, 2001, Section
4.4). Next, the equations for α (Miller, 1995) are

d̂0i =

p∑
j=1

[d̂ij + (j/n)d̂0,|j−i|]α̂j , (7)

for i = 1, . . . , p, where d̂ij = d̂
(RR)
ij /σ̂2

R + d̂
(II)
ij /σ̂2

I − ρ̂/(σ̂Rσ̂I)[d̂
(RI)
ij + d̂

(IR)
ij ], 0 ≤

i, j ≤ p. In the previous, d̂(ιζ)ij =
∑n−i−j

t=1 η̂ι,t+iη̂ζ,t+j with ι, ζ ∈ R, I , with η̂Rt =

yRt − x′
tβ̂ cos θ̂t and η̂It = yIt − x′

tβ̂ sin θ̂t. Further, the equation for β is

β̂ = (X ′ÂX)−1X ′(D̂yR + ÊyI), (8)

where the matrices Â, D̂, and Ê are as follows: Â = ĈR̂
−1

n Ĉ/σ̂2
R + ŜR̂

−1

n Ŝ/σ̂2
I −

2ρ̂ĈR̂
−1

n Ŝ/(σ̂Rσ̂I), D̂ = [Ĉ/σ̂2
R−ρ̂Ŝ/(σ̂Rσ̂I)]R̂

−1

n , and Ê = [Ŝ/σ̂2
I−ρ̂Ĉ/(σ̂Rσ̂I)]R̂

−1

n .
Note that it may be necessary to enforce the identifiability condition Xβ̂ ≥ 0, in which (8)
will need to be modified as follows. The MLE of β subject to the constraint that a′β = 0
is β̃ = Ψβ̂, where Ψ = Iq1 − (X ′ÂX)−1aa′/[a′(X ′ÂbX)−1a].

Newton-Raphson (NR) steps for δ0 take the form

δ
(k+1)
0 = δ

(k)
0 −

[
∂LL

∂δ0
(δ

(k)
0 )

]
/

[
∂2LL

∂δ20
(δ

(k)
0 )

]
, (9)

where the first derivative and second partial derivatives are

∂LL

∂δ0
= β′X(−M1 sin 2δ0 −M2 cos 2δ0)Xβ + 2β′X(m1 sin δ0 −m2 cos δ0)

∂2LL

∂δ20
= 2β′X(−M1 cos 2δ0 +M2 sin 2δ0)Xβ + 2β′X ′(m1 cos 2δ0 +m2 sin 2δ0)

In the previous, M1 and M2 are n×n matrices given by M1 =
(

1
σ2
R
− 1

σ2
I

)
(C̃R−1

n C̃ −

S̃R−1
n S̃)− 2ρ

σRσI
(C̃R−1

n S̃ + S̃R−1
n C̃) and M2 =

(
1
σ2
R
− 1

σ2
I

)
(C̃R−1

n S̃ − S̃R−1
n C̃) +

2ρ
σRσI

(C̃R−1
n C̃ − S̃R−1

n S̃). Further, m1 and m2 are vectors of length n given by m1 =

P 1RR
−1
n yR +P 1IR

−1
n yI and m2 = P 2RR

−1
n yR +P 2IR

−1
n yI , where P 1R = 1

σ2
R
C̃ −

ρ
σRσI

S̃, P 1I = 1
σ2
I
S̃ − ρ

σRσI
C̃, P 2R − 1

σ2
R
S̃ − ρ

σRσI
C̃, and P 2I = 1

σ2
I
C̃ + ρ

σRσI
S̃. In

the previous, C̃ and S̃ are n-diagonal matrices with tth entries cos g(z′
tδ) and sin g(z′

tδ),
respectively.

Last, NR steps for δ are

δ(k+1) = δ(k) −
[
∂2LL

∂δ2
(δ(k))

]−1 [
∂LL

∂δ
(δ(k))

]
(10)

Derivatives of the log-likelihood function w.r.t. δ only concern the h function in (3), which
can be written as h =

∑n
t=1

∑p
k=−p

∑
ι,ζ cιζR

−1
n (t, t + k)ηιtηζ,t+k. In the previous, ι

and ζ are both summed over {R, I}, and cιζ is a constant not dependent of δ (for instance,
cRR = 1/σ2

R). Since the entries of R−1
n also do not depend on δ, we need only concern

ourselves with the derivatives of ηιtηζ,t+k w.r.t. δ for ι, ζ ∈ {R, I}. The first derivative



∂/∂δ(ηιtηζ,t+k) = ηιtη
′
ζ,t+k + η′ιtηζ,t+k,2 where η′ιt = ρtztg

′(z′
tδ)(sc)t, with (sc)t =

1(ι = R) sin θt − 1(ι = I) cos θt, where 1(A) is the indicator function taking the value
1 of A is true and 0 otherwise. The second derivative ∂2/∂δ2(ηιtηζ,t+k) = ηιtη

′′
ζ,t+k +

η′′ιtηζ,t+k + 2η′ιtη
′
ζ,t+k, where η′′ιt = ρtztz

′
t[g

′′(z′
tδ) + g′(z′

tδ)(sc)
′
t], with (sc)′t = 1(ι =

R) cos θt + 1(ι = I) sin θt.

2.3 Competing models

For simplicity, we do not distinguish notationally between corresponding terms in the dif-
ferent models in the following.

2.3.1 Uncoupled phase model

Lee et al. (2007) present the uncoupled phase model for complex-valued time series

[yR

... yI ] = X[βR

... βI ] + [ηR

... ηI ], (11)

where (η′
R,η

′
I)

′ ∼ N (0,Σ ⊗ In). This is the multivariate multiple regression model

y = Xβ + η (see Johnson and Wichern, 2007, Section 7.7), where y = [yR

... yI ] and

η = [ηR

... ηI ] are n× 2 matrices and β = [βR

... βI ] is a q× 2 matrix. The MLEs are given
by

β̂ = (X ′X)−1X ′y (12)

Σ̂ = (η̂′η̂)/n (13)

Lee et al. (2007) present a Hotelling T 2 test statistic for the test of H0 : β′a = 0 vs.
Ha : β′a ̸= 0, given by

T 2 = (β̂
′
a)′
[

n

n− q
a′(X ′X)−1aΣ̂

]−1

(β̂
′
a), (14)

which follows a 2(n−q)/(n−q−1)F2,n−q−1 null distribution. Rowe (2009) and Lee et al.
(2009) discuss the similarities and differences between the coupled and uncoupled phase
models.

2.3.2 Phase-only data-based regression model

The model assumes that each phase measurement ϕt is independent and follows the von-
Mises distribution (Mardia and Jupp, 2000; von Mises, 1918) with location parameter θt =
δ0 + g(z′

tδ) and concentration parameter κ, with g(·) and z′
t as before. Thus, the log-

likelihood function is given by

logL(δ0, δ, κ|ϕ) = −n log(2πI0(κ)) + κ

n∑
t=1

cos(ϕt − θt), (15)

where I0(·) is defined as the modified Bessel function of the first kind and the zeroth order
(Abramowitz and Stegun, 1965). An iterative algorithm for ML parameter estimation based
on Fisher and Lee (1992); Rowe et al. (2007) is as follows: after calculating the starting

2denoting ”prime” by partial derivative w.r.t. δ



value δ(0) = 0.5(W ′W )−1W ′ϕ, calculate the updated parameter estimates on iteration k
as

δ
(k+1)
0 = arctan4(S,C) (16)

κ(k+1) = A−1(R) (17)

δ(k+1) = δ(k) + (Z ′G2Z)−1Z ′G2w. (18)

In (16), S = (1/n)
∑n

t=1 sin(ϕt − g(z′
tδ)) and C = (1/n)

∑n
t=1 cos(ϕt − g(z′

tδ)). In
(17), R = [S2 + C2]1/2 and A−1(·) is the inverse of the ratio of modified Bessel functions
A(·) = I1(·)/I0(·). The latter can be well approximated (Mardia and Jupp, 2000) as

A−1(R) ≈


2R+R3 + 5R5/6 R < 0.53
−0.4 + 1.39R+ 0.43/(1−R) 0.53 ≤ R < 0.85[
2(1−R)− (1−R)2 − (1−R)3

]−1
R ≥ 0.85

(19)

Last, in (18), G is a diagonal matrix with entries g′(z′
tδ) = 2/(1 + (z′

tδ)
2), t = 1, . . . , n,

and w is an n-vector with tth entry wt = sin(ϕt − θt)/[A(κ)g′(z′
tδ)]. Iterations should

proceed until convergence of (15).
A Wald test statistic for H0 : δ = 0 vs. Ha : δ ̸= 0 can be calculated from the MLE δ̂

and its asymptotic covariance matrix

Var(δ̂) =
1

κ̂A(κ̂)

{
(Z ′G2Z)−1 +

(Z ′G2Z)−1Z ′gg′Z(Z ′G2Z)−1

n− g′Z(Z ′G2Z)−1Z ′g

}
, (20)

as given in Fisher and Lee (1992), where g is a vector whose elements are the diagonal
entries of G.

3. Simulation experiments

Section 2 introduced three methods for detecting task-related phase activation in fMRI time
series, including two complex-valued (CV) data-based approaches that differ in whether the
model couples the phase and the magnitude signals and an additional approach that utilizes
the phase-only data (discarding the magnitude data). To compare these three methods in
a setting of known ground truth, we performed simulation experiments. In all cases, we
simulated CV time series according to model (1) where X and Z are specified according
to a block design experiment with 16 time points of “off” followed by 19 epochs consisting
16 time points of “on” and 16 time points of “off”. As a result, X has n = 621 rows (after
discarding the first three time points to allow the scanner to come to equilibrium) and q1 = 2
columns, the first of which is all ones and second models the expected BOLD response,
calculated as the stimulus time course convolved with the Glover (1999) hemodynamic
response function, which is then zero-centered and scaled to have maximum absolute value
of one. The single column constituting Z is equal to the second column of X , which
follows the empirical observation of a linear relationship between magnitude and phase
activation (Menon, 2002).

We simulated independent CV time series, that is, without AR temporal dependence
and with real/imaginary error correlation ρ = 0; further, we assumed equality of real and
imaginary error variances – i.e., σ2

R = σ2
I = 1. Within this context, we performed two

experiments. The first assumed no magnitude activation (i.e., β1 = 0 but varied the size
of the phase activation parameter δ and compared the power of the three phase activation
detection methods. Conversely, the second experiment assumed no phase activation but
varied the size of the magnitude activation and compared the false positive rates of the



phase detection methods. In both experiments, we also varied the (magnitude) signal-to-
noise ratio (SNR) β0/σ from 0.5 to 10. In all cases, we generated 10,000 CV time series at
each unique set of parameter values.

3.1 Phase activation power in the absence of magnitude activation

For the generated CV time series with no magnitude activation, we varied the size of the
phase activation parameter δ from 0 to 0.04 radians. For each time series, we performed
the phase activation test of under the three methods (CV coupled, CV uncoupled, and
phase only) and calculated the proportion of time series detecting phase activation at the
0.001 significance level (the power). Figure 1(a) summarizes how the power of the phase
activation test varies by δ, SNR, and method. Of course, the power increases with the phase
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Figure 1: (a) Phase activation detection power of simulated fMRI time series of varying
phase activation parameters δ and (magnitude) SNRs. The proposed CV coupled model-
based test is more powerful than existing CV uncoupled model-based and phase-only data-
based tests. (b) The CV uncoupled model-based test fails to control the false phase activa-
tion detection rate at the significance level of 0.001 – it increases with the size of magnitude
activation – unlike the CV coupled- and phase-only data-based tests.

activation size δ, but, for the same δ, it also increases with the SNR. The follows from the
fact that the distribution of ϕt|rt is von-Mises with location θt and concentration parameter
rtµt/σ = rtSNR. In other words, the (magnitude) SNR also affects the amount of “noise”
in the phase distribution: the larger the SNR, the more concentrated the phase distribution
(i.e., less noise), leading to larger phase activation detection power. Comparing by method,
the CV coupled model-based test has greater power in all cases. Its superiority over the
phase-only data-based test can be attributed to its use of additional magnitude information;
the size of this difference increases as the SNR decreases.3 Further, the superior power of
the CV coupled- vis-a-vis the uncoupled model-based test can be attributed to “specificity”.
The coupled model-based phase activation test H0 : δ = 0 vs. Ha : δ ̸= 0 focuses only on
the phase activation parameter, while the uncoupled model-based test H0 : (βR1, βI1)

′ = 0
vs. Ha : (βR1, βI1)

′ ̸= 0 tries to detect the same phase activation with two parameters, and
therefore is less powerful.

3We can connect this result to previous results for magnitude activation detection: increased power for CV
coupled model-based tests over magnitude-only data-based tests in the absence of phase activation (Adrian
et al., 2018; Rowe and Logan, 2004).



3.2 False phase activation detection in the presence of magnitude activation

For the generated CV times with no phase activation, we varied the size of the magni-
tude activation parameter β1 from 0 to 0.4. Figure 1(b) displays the proportion of time
series detecting phase activation at the 0.001 significance level (the false positive rate) at
SNR = 6.While the methods which test the phase activation parameter δ – the CV coupled
model-based and phase-only data-based tests – have false positive rates adhering with the
significance level (after accounting for simulation variability), the false positive rate of the
CV uncoupled model-based test grows with the size of the magnitude activation. This is
because the CV uncoupled model-based test detects any change in the CV signal, whether
it arises in the magnitude or phase direction, or both.

4. Discussion

In this article, we have presented a novel model for magnitude and phase activation in fMRI
time series and illustrated estimation of its parameters. The phase-coupled structure of this
model provides separate tests of activation for the magnitude and the phase data, which
show promise in the “brain or vein” problem”, distinguishing voxels that show neuronal
activation from neighboring voxels containing draining veins. Such distinguishing ability
could prove essential for fMRI applications in neurosurgical planning. Simulation exper-
iments indicate that, in comparison to complex-valued phase-uncoupled and phase-only
data-based models, our phase-coupled model shows increased power of detecting phase
activation in the absence of magnitude activation and is not prone to false positives in
phase activation detection in the presence of magnitude activation.
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